NASA CR-134726

Composite-Reinforced Propellant Tanks
_(Final Report)

by

L. D. Brown, M. J. Martin, B. J. Aleck and R. Landes

GRUMMAN AEROSPACE CORPORATION

prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTR? _ N

{NASA-CR=-134726) - COMPOSITE REINFORCED N75-21340
PROPELLANT TANKS Final Report (Grumman
Rerospace Corp.) 203 p HC $7.25 CSCL 22B

Unclas

63,18 18591
NASA Lewis Research Center

Contract NAS 3-14368

James R. Faddoul, Project Manager



———

1!

Report MNa.
NASA-CR-134726

2. Government Accession No.

3. Recipient’s Catatog No.

4. Title and Subtitie

COMPOSITE-REINFORCED PROPELLANT TANKS
{FINAL REPORT)

5. Report Date
February 1975

6. Performing Organiration Code

7. Author(s)

Lawrcnece D. Brown, Michael J. Mariin and
Benjamin J. Aleck (Grumman Aerospace Corp.) and
Robert Landes (Struclural Composites Industries)

B. Performing Organiration Report Mo.

9. Performing Qrganization Name and Address

Grumman Aerospace Corporation
Bethpage, New York 11714

10. Work Unit No,

11. Contract or Grant No,
NAS 3-14368

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administralion
21000 Brookpark Rd.
Lewls Rescarch Cenler, Cleveland, Ohio 44135

13, Type of Repart and Period Covered
Contraclor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Project Manager, James R, Faddoul
Materials and Structures Division
NASA Lewis Research Center
Cleveland, Ohio 44135

16. Abstract

Dcsign studies involving weight and cost were carried out for several structural
concepts applicable to Space Shuttle disposable tankage. An effective design, a
honeycomb stabilized pressure vessel, was chosen for test, and a test model was

designed and fabricated.

17. Key Words (Suggested by Author(s) )

Bonded Low-cost Tankage
Composite Optimization 2219 Al Alloy
Constrictive-stiffened Overwrap

Cryogenic Sandwich

Integral S-Glass

Kevlar Space Shuttle

18. Distribution Statement

Unclassified, Unlimited

19, Security Classif, (of this report}
.Unclassified

20. Security Classif. {of this pagel
Unclassified

21. No. of Pages 2.. Price*
$3.00

" For sale by the National Technicai Information Service, Springfield, Virginia 22151



it

FOREWORD

The work described herein was performed by the Grumman Aerospace Corpora-
tion with Structural Composites Industries as an associate under NASA Contract NAS
3-14368. Mr. James R. Faddoul, Materials and Structures Division, NASA Lewis

Research Center, was Program Manager. The contract was initiated in June 1971
and redirected December 1971,
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SUMMARY

The Space Shuttle Orbiter employs a large disposable LH,, and LOX tank on
each flight. The objective of this program was to determine if Costs could be reduced
by using composite tank construction. The total cost was considered, tooling, mater-
ial, repeated fabrication costs and the cost of transporting each extra kilogram from
fabrication through launch, to separation. Although weight reduction could be achieved
by overwrapping the monocoque LOX tank with prestressed glass fiber, the complex-
ity of the fabrication led to costs exceeding the savings in transportation. The
baseline for the LI, tank was an integrally-stiffened 2219 aluminum alloy shell, re-
quired to sustain laFge bending moments and hence longitudinal compression loads.
Composite construction offered a substantial cost savings in fabrication options here,
and overcame a slight increase in transportation cost. Two composite designs were
found attractive; 1) a sandwich design consisting of a 2219 aluminum alloy inner
cylinder with a paper honeycomb core, overwrapped with two layers of glass cloth;
2) a design involving bonding and mechanically attaching {without through-penetrations)
nz stiffeners and frames to the aluminum shell in order to construct a vessel which
had very much the appearance of the baseline design. A test program was devised to
test the sandwich design and two vessels simulating a 1/6 scale LHy tank were con-
structed, thereby also checking the projected ease of fabrication. The testing of the
hardware was beyond the scope of this project, but is planned by NASA LeRC. The
conclusions drawn arethat composites will not save cost on the Shuttle LOX tank but
would be a substantial cost saver on the LH 2 tank.
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INTRODUC TION

A. OBJECTIVE

The objective of this program is the determination of the value of composite
materials in the fabrication of structurally efficient, minimum cost, large scale,
disposable propellant tanks for use with the Space Shuttle system.

E. BACKGROUND

At the time this program was initiated, the Space Shuttle system under con-
gideration was the Grumman C2F configuration. Very large integral tankage was a
common feature of the recoverable Booster and the Orbiter. In this initial effort,
weight saving was the primary consideration with cost secondary. In executing the
program, six design concepts were evaluated that employed composite materials to
achieve weight reductions. The results of this initial effort are described and dis-
cussed in Appendices A and B. The continued effort would have resulted in the design,
fabrication, and test of the selected designs, one set for the Booster tanks and one
set for the Orbiter tanks.

Gross changes in the Space Shuttle concept occurred, such as the series-burn
ballistic recoverable booster and the non-integral external drop-tanks for the Or-
biter, because of drastic reductions in anticipated Shuttle annual budgets. In order
to assure the relevance of the continuing program, a redirection was issued which
reflected the urgent emphsais on reduced cost and in which the importance of weight
was reflected by its impact on costs. Because the booster situation was still fluid,
attention was concentrated on the cylindrical portions of external HO tankage of the
Grumman 0408 Shuttle configuration.

C. SCOPE

The contract scope consisted of analytical evaluations of several concepts of
composite-reinforced 2219 aluminum alloy tank designs and the selection of an ef-
fective design for construction as a scale test model. The program effort consisted
of two main tasks. In Task I - Design Evaluation, the materials, designs and costs
of large~-scale, disposable propellant tanks were evaluated. Cost was the primary
selection criteria; weight was of secondary importance. In the development of the
composite~reinforced tanks designs, composite properties were examined, analytical
methods were determined, and parametric weight and cost studies were carried out.
Component and materials evaluation in support of the analytical study consisted of
material property and material-structural interaction investigations., In Task II -
Experimental Evaluation, subscale models typical of low-cost disposable tankage
were designed and fabricated to verify the low cost construction features and the
structural adequacy. Test conditions typical of the Space Shuttle service environ-
ment were determined. Material evaluation in support of the design was also car-
ried out. ‘

PRECEDING PAGE BLANK NOT FILMED
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COMPOSITE-REINFORCED PROPELLANT TANKS

A. TASK I - DESIGN EVALUATION

In this task, materials, designs, and costs of large-scale disposable propellant
tanks were evaluated.

1. Configuration and Geometry

The Grumman 0408 Shuttle configuration, consisting of a ballistic recoverable
booster, disposable LH2 and LOg tank, and Orbiter vehicle, is depicted in Figure 1.
The disposable tank is cylindrical, with a conical taper in the LOg portion at the for-
ward end. The end domes are elliptical. Welded 2219-T87 aluminum alloy is used
for the pressure shell. Insulation is applied to the external surface, and any rings or
stringers are on the internal surface. The aft interstage attachment to the Orbiter
penetrates the LHg pressure shell, all other attachments are to skirt structure. The
geometry of the disposable tank is given in Figure 2.

2., Environment and Loading Conditions

The critical loading conditions at the tank stations studied in the program are
given in Tables 1 and 2, These load conditions and stations for analysis have been
selected to show representative sections of the tank and to explore the full range of
tank environment. The critical flight conditions correspond to the end of first stage
boost and to post-orbit insertion, The LH2 tank ultimate load intensity envelope for
the end boost condition is given in Figure 3. The two other conditions included in the
tables occur during the overwrap and cure processes, The temperatures of the tank
wall structure were determined as follows:

a. Flight: End boost - the structural temperature equals the propellant tem-
perature for an externally insulated tank

Post-orbit insertion - the structural temperature is due to the com-
bined effort of (external) ascent heating and (internal) aubogeneous
gas pressurization.

b. Manufacturer: Cure and post-cure - the temperature is determined by the
manufacturing requirements of the resin system.

3. Structural Concepts

The structural concepts considered in this redirected contract effort were
derived from the most promising of those considered in the original contract effort.
These are discussed below and are illustrated in Figure 4. Because the tanks under
consideration have most of their weight in the cylmdrlcal gsections, the design effort
has been directed to these regions.



The baseline LHg tank consists of a 2219-T87 aluminum alloy pressure shell
internally stiffened against axial compression by integral axial stiffeners and mechan-
ically fastened rings. The "Integral Stringer" concept, Concept A (integrally
stiffened design), also has internal integral axial stiffeners as in the baseline tank but
is circumferentially overwrapped with S-glass or PRD fibers in order to reduce
structural weight, The "Z-Stiffened" concept, Concept B, differs from Concept A in
that the stiffeners are zee sections and that they and the rings are bonded to the shell.
The "Sandwich" concept, Concept C, consists of an aluminum pressure shell stiff-
ened as a honeycomb sandwich with a thin, glass fabric outer face.

The LOg baseline tank consists of a monocoque aluminum pressure shell. The
"Membrane' concept, Concept D, utilizes circumferential overwrap of S5-glass or
PRD on the pressure shell,

4, Materials

a, ALUMINUM ALLOY 2219 Aluminum alloy 2219 was selected as the metal shell
component of the composite reinforced propellant tanks. Handbook properties for the
-T62 and ~T87 conditions from 4509K to 78°K were uged in the parametric study of tank
configurations. The results are presented in Tables 3 and 4 (compiled from Refer-
ences 1, 2 and 3).

Although solution treatment and aging after welding provides optimum weld-
joint strength, joint efficiency and joint ductility with 2219 aluminum for composite
reinforced shells, this heat treatment cycle is not feasible for the tanks of interest.
Instead, it was assumed that the metal shells will be fabricated in the -T37 /-T87
temper, and have thickened weld lands which will be artifically aged/as-welded after
welding.

b. COMPOSITE REINFORCEMENT FOR FILAMENT OVERWRAPPING Design
properties at 450K to 780K were established for candidate filament-overwrapped
composites which circumferentially reinforce the 2219 aluminum alloy propellant
tanks. Initially, S-glass/epoxy, *PRD-49-III/epoxy, boron/epoxy, and graphite/
epoxy were evaluated. Glass and PRD were selected as the most promising candidates
based on strength, density, raw material cost, and fabricated composite cost.
Resultant unidirectional filament-wound composite material properties for use in
parametric design studies are presented in Table 5 and discussed below,

(1) 8-901 Glass Filament/Epoxy This material has a very high demonstrated tensile
strength-to-weight ratio in large filament wound tank structures. The composite
tensile modulus increases by 10% from the room temperature value (RT) at 789K
(Ref. 1, 5)., No change in modulus occurs from RT {o 4500K. The composite
strength increases 25% to 40% in going from ambient to cryogenic temperatures, but
at 450°K a 20% reduction from the room temperature strength is ocbserved (Refs. 1,
5 through 9). Glass filament/epoxy composites are subject to strength degradation
due to cyclic loads and sustained loads, especially when the load level is high com-
pared with the single-cycle strength, A significant amount of glass filament-wound

¥Kelvar-49 is the current trade name.



vessel cyclic and sustained loading data is available to permit selection of reliable
factors for glass/epoxy reinforcement of metal tankage structures.

Sustained Load Effects; Prestressing of filaments in order to reduce LOX tank
weight would subject these fibers to long-term loading at room-temperature. The
two design values studied were 82.8 kN/cm?2 and 55.2 kN/em?, The single-cycle
strength is 152 kN/ecm2, The lower prestress, which is 36, 5% of ultimate, could be
sustained indefinitely at room temperature*. If the higher prestress, which is
54.4% of single-cycle strength, were used, the vessel would fail in less than one
year, * if stored at room temperature. Storage at lower temperature would reduce
the stress level. At cryogenic storage conditions, the sustained load capability
would be very high. For example, vessels have been held for 70 days at 90% of
single cycle ultimate at 78°K (Ref. 9).

Coefficient of Thermal Expansion: Extensive data are available for 450°K to 78°K
thermal coefficients of expansion for S-801 glass/epoxy filament-wound composites
(Ref. 1, 5, 9).

Overview Glass/epoxy wound composite is by far the most mature of the candi-
date composite material systems in terms of state-of-the-art and successful
application to operational systems. Techniques required to obtain composites of high
quality, with consistently reproducible properties (raw material uniformity, resin
content, void content, prestress, composite curing parameters, strength, and
elastic properties) are known and understood to a greater degree than with the other
candidate composite material systems. Quality-assurance gystems exist for S-901
glass composite and include raw material specifications and fabrication process
gpecifications. Current raw material costs ($11-$13/kg)** are much lower than for
PRD fibers. High levels of prestress are practical. Fabrication of very thin in-
dividual layers is practical and significant in achieving minimum-weight tank designs.

(2) PRD-49-III Epoxy This composite system is relatively new, and evaluations of
it indicate a strength-to-weight ratio advantage over 5-901 glass/epoxy. In addition,
PRD-49-ITI/epoxy composites have greater than twice the Youngs Modulus/density
ratio of glass composites. Filament strength translation into composite strength is
excellent. Accordingly, the PRD-49-IT1/epoxy wound composite is a leading candi-
date for tension loaded tank elements. Because of high strength of PDR-49-III, with
higher modulus than glass, higher levels of stress can be developed in the filaments
at lower strains in the metal shell substrate. Offsetting these advantages is a
negative coefficient of expansion for PRD-49-111/epoxy composites, which works
against thermal strain compatibility between the windings and metal shell during
changes in operating temperatures. As a result, higher levels of filament pretension
in the as-fabricated tank at room temperature are required to achieve design con-
ditions at cryogenic temperatures. In addition, the negative thermal expansion

s*The $11-13/kg is for highest quality S-901 glass; a commercial grade of the
material is available which has 10% lower strength and the same modulus as
§-901 glass.



coefficient increases the rate of filament stress increase (compared to glass/epoxy
composites) when the tank is used at elevated temperatures. Current low compres-
sive strength properties do not make the material an outstanding candidate for axial
compression applications.

The data in Table 5 for PRD-49 composites are based on information derived
from DuPont (the filament manufacturer) and from NASA-LeRC which is sponsoring
work to evaluate PRD-49 in cryogenic filament-wound pressure vessels. Comments
on the data follow,

Strength, The limited 4 in. -diameter by 6 in. -long pressure vessel tests con-
ducted to date have yielded somewhat lower effective strength levels than have been
attained with NOL rings. It is not known if strength levels obtained in the simple
rings and small vessels will be achieved in the large tanks of interest. In the
absence of other information, and with the assumption that PRD-43-III strength
levels will increase somewhat as filament and composite fabrication parameters are
optimized, the NOL ring strength data have been adopted.

At 7 SOK, the NASA-LeRC sponsored work shows the composite strength to be
essentially the same as at 297°K.

Data are not available for the 450°K design condition. A strength of 80% of the
room temperature value was adopted as a reasonable estimate.

Room temperature test results on the small filament-wound vessels and on
simple laminates have shown dramatically that PRD-49 composites are insensitive to
cyclic and sustained loadings. For example, in the pressure vessels, 1000 cycles
to 60% of single cycle strength produced no strength degradation and 1000 cycles
were sustained at the 90% load level prior to failure. Under static loading con-
ditions, PRD-49 composites can sustain loading at 90% of ultimate without failure
for 1000 hours. Thus, the indication is that cyclic and sustained loading will not
seriously degrade the composite strength levels at room temperature for the tank
service loadings anticipated, PRD-49 composites may be expected to display these
same characteristics at 78CK and 450°K.

Overview., PRD-45/epoxy composite is a relatively new material; however, much
wotk is in progress and is being initiated to provide evaluations and performance
demonstrations of the material. Its properties are quite attractive as a filament
reinforcement of metal tankage. - The fiber currently costs much more than $-901
glass fibers, and substantially less than boron or high-strength graphite fibers.
However, current raw material costs of $44/kg are projected to drop as material
sales volume increases.

(c.) MATERIALS USED FOR HONEYCOMB REINFORCEMENT. Mechanical proper-
ties of the materials used in the analysis of Concept C, the honeycomb reinforced
tank, were obtained from various specifications and commerical sources. These
properties are given in Table 6. PartI of Table 6 describes cloth properties, Part II
gives core properties and Part III gives the adhesive properties.

—



5. Analysis

a. CRITERIA Criteria and groundrules which reflect Grumman Shuttle analysis
procedures were defined for composite reinforced tanks. The following criteria
were utilized:

(1) When flight loads and internal pressure act together, ultimate load consists
of ultimate flight loads coupled with limit pressure loads. This is shown
schematically in the figure below. When internal pressure relieves axial
compressive flight loads,

FLIGHT LOADS

LOAD LEVEL o — e — PRESSURE LOADS

1 V I
LIMIT ULT =14 X LIMIT

1.4 x flight load is combined with the axial load corresponding to
minimum system pressure to determine ultimate axial load. Where internal
pressure adds to tensile flight loads, 1.4 x flight load is combined with the
axial load corresponding fo maximum system pressure. Pressure vessels
will be designed for a pressure of 1.4 times maximum 11m1t pressure as
a separate desigh condition. :

(2) Stresses for biaxial load cases will be computed using the octahedral shear
stress theory: fi +f i - fx f_ & F. For stresses combined with axial
compression, F is set equal to ch For biaxial tension cases, F is set to

Follow =+ 92 Fi where Fallow is determined by plasticity calculations.

(3) In overwrapped designs, the maximum overwrap tensile stress is Ftu/1'4

at limit load and the maximum compressive liner stress is Fcy/ 1.15,

The following groundrules were assumed:

(1) Two stations on the I..O2 tank, Sta 1240 and 1550, will be studied.



(2) Two points at Stations 3050 and 4065 on the upper surface of the LH2 tank
will be studied. :

(3) Frame gpacing has been fixed at 76.2 cm,
{(4) External pressure will not be a design condition.

b. COMPRESSION PANEL OPTIMIZATION Automated procedures exist at
Grumman for obtaining minimum-weight configurations for axially compressed,
stiffened panels. A computer program for integrally stiffened panels is based on the
analysis procedure of Ref 11 and incorporates the random gearch synthesis pro-
cedure of Ref 12. A second program for zee-stiffened panels uses the analysis of
Ref 13 in conjunction with a minimization method based on Refs 14 and 15. Tor
specified materials and loads, these computer programs develop minimum-weight
sections and give as results the stiffener dimensions, spacing, and sheet thickness.
Algo included in the output are the critical stresses of the panel elements in the vari-
ous buckling and failing modes. A slight modification to the zee-stiffened panel
program was necessary in order to account for bonding of the stiffeners to the sheet
instead of riveted attachments, A triangular distribution of reactive forces between
the sheet and attached flange of the stiffener was assumed. The "equivalent! rivet
offset distance from the stiffener web is therefore one-third of the attached flange
width.,

c. MEMBRANE OVERWRAP A computer program for circumferentially overwrapped
cylindrical pressure vessels was also developed (Ref. 16) to aid in the investigation

of the various fiber overwrap materials. Wrap and liner thickness and stresses are
calculated for various loading conditions and temperature when a wrap prestress

and a design condition liner hoop stress are specified.

d. GENERAL INSTABILITY General instability strength of the stiffened shells was
determined using 2 computer program based on the results of Ref 17. Additional
cross checks were made using the program of Ref 18.

e. HONEYCOME Honeycomb analysis was based on the methods of Ref 19, Initial
caloulations included the effects of face-sheet stiffness (Ref. 20) but these were
found to be negligible for the configurations considered.

f. PROCEDURE The analysis tools discussed above were incorporated into a design
procedure. Many configurations were analyzed, thereby leading to more efficient
designs. The design criteria were coupled with the analysis, and minimum-weight
designs consistent with the criteria and groundrules were determined. Since the
procedures differ somewhat for the various structural concepts, they are discussed
separately below, and followed by some sample calculations,

10



(1) Integrally-Stiffened and 7-Stiffened Designs, Concepts A and B

If it is assumed that the net ultimate axial load (Condition 1 - end boost)
acts alone {i.e., tank pressure is neglected}, a compression-only minimum weight
design can be determined for each gpecified tank wall thickness by using the com-
puter optimization programs for integrally-stiffened or zee-stiffened panels. Each
of these designs is able to sustain the applied ultimate axial load, but are of different
weights and are working at different stress levels., The maximum stiffener stress
(as well as local and overall instabilily stresses, geometry, etc.) is given in the
results. These are included in Tables 7 and 8. The panel weight (or "smeared"
thickness) is also obtained for each specified skin thickness and is shown in Figure 5.

Each of these results is then checked for combined stresses using the (maximum
compressive) sheet edge stress and the hoop stress due to the internal limit tank
pressure of Condition 1.

The designs are also checked as pressure vessels (1.4 x limit tank pressure)

The lightest weight designs which satisfy all the load conditions and criteria
are designated as "baseline" (all aluminum) panels. (The integral stiffened panel,
Concept A, was designated as the Shuttle LH2 tank baseline structure.)

For each candidate panel, the (maximum compressive) sheet edge stress from
(a) is used to determine an allowable hoop stress which satisfies the combined stress
criteria. These are listed in the last column of Tables 7 and 8.

The composite overwrap computer program for pressurized eylindrical tanks
is used to determine overwrapped designs and to calculate wrap and metal liner
stresses for all load conditions. A typical set of results is given in Table 9. The
wrap prestress and design condition allowable liner hoop stress are specified for
each set of calculations.

These designs are checked for the combined stress and overwrapped design
criteria,

The lightest of these which meet 21l the criteria are selected as overwrapped
designs. Weight comparisons of the various designs are given in Tables 10 and 11.

The required ring size to provide general instability strength was determined
by varying the ring size until the general instability load exceeded the net ultimate
applied load. A knockdown factor of .75 was used with the calculated critical load.

The dimensions and unit weights of the minimum weight sections are summar-
ized in Tables 12 and 13.

11



(2) Sandwich Design, Concept C

The required thicknesa of equal aluminum face-sheets for biaxial strength is
determined using the combined stress criteria and the applied axial and hoop loads
for the loading conditions.

For the aluminum honeycomb core, the core depth required to satisfy general
instability for the applied ultimate axial load is determined using the honeycomb cyl-
inder analysis and design charts. _

Local instability (wrinkling and intercell buckling) of the face sheets is checked.

This design is classified as a "baseline”.

For the composite sandwich, the inner aluminum face sheet thickness is
assumed equal to the sum of the face sheet thickness obtained in (2).

For a range of fiberglass outer face sheet thicknesses and a given honeycomb
core, core depths required to satisfy general instability are determined. These
calculations are carried out in Table 14 for the paper core sandwich.

Local instability of the face sheets is again checked.

The lightest of the designs which meet all the criteria are selected as com-
posite reinforced designs. The results are summarized in Table 15.

Rings are not required since general instability was satisfied without them. A
summary of unit weights for the LH, tank is given in Table 16,

(3) Membrane Design, Concept D (LC}2 Tank)

A baseline aluminum thickness is determined for the pressure loading con-
ditions and design criteria.

The composite overwrap computer program for pressurized cylinders is used
to determine overwrapped designs. For specified values of overwrap prestress and
design condition liner hoop stress, wrap and liner thicknesses which satisfy the load
conditions and criteria are determined. By systematically varying the prestress and
hoop stress, panels of different local weights are obtained. A plot of local weight
("equivalent" aluminum thickness) as a function of prestress and hoop stress is pre-
sented in Figures 6 and 7. The minimum weight designs were selected and are
presented in Table 17,

g. SAMPLE CALCULATIONS Some sample calculations which illustrate the pro-
cedures discussed in the previous subsection are given here. The cross-sections
chosen for illustration were selected from the results of the optimization studies.
The material properties are those quoted in Tables 3, 4, 5, and 6.

12



(1) LH, Tank -~ Baseline Structure - Integrally Stiffened at Sta 3050, Condition 1

fr b >
r b~=18.1cm tj =.343 cm
d=4.44 cm tg =.335cm
T tg =tp +dtg/b =.426
N [ 7 d h=d+t/2 =4.61 cm
1 1 N, od = -6130 N/cm (ult)
£ Q L =76.2 cm (frame spacing)
Following the analysis method of Reference 11,
r, =h/b =.255 Local Buckling
b £\
r, =tst/t£= L977 fp =094 K E T)
1V, =.249 E=8.75 x 10° N/em® @2218-T87 @ 20°K)
K, =4.24 (Fig 1 of Ref 1) £, =12100 N/em®

Required stiffener rigidity:

)
5D /req'd = antilog

Yreq'd = (

Where: m=2,325 -

C=-,175 +, 187K +.325 rply =

= 83. 8 for buckling.

req‘d
Applied stress:
e = Nappd/ i
For post buckling: _
‘ Yreq'd ~ ‘yreq'

. 0905 K +,08625 rb r,c

L
mlog — + C
b

=1.956

. 701

=14400 N/cm2 >f
er

P fc/fcr =~ 100
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: hz) 40’ /b) + 1,1,

2
Y ctual = (L-wv )ryr (t;t (b'e/'b) +rr

using bé/b =.5, Y, 1001 = 128 > Yreq'd

Buckling of outstanding flange:
2

. =.38 ot 2
gt = *384E p = 18600 N/cm >fc

Panel flexural instability: For the skin edge stress equal to fe = 18600 N/cm”:
fcr/fe =, 65
Effective widths for load and stiffness:
_ 2/5 4/5 6/5 _
be/b = 1.20(fcr/fe)_ - .65(fcr/fe) +.45 (f, r/fe) =,818

_ 2/5 4/5 6/5 _
bé/b =,72 (fcr/fe) -.13 (fcr/fe) -.09 (fcr/fe) = ,460
Radius of gyration:
b /nbrt{tlbé/b trT,)
P, =—= T = 1,105 cm
R V12 be/b * rbrt) (be/b * I.brt)

L/pR = 69

7r2E

=T = 2
fcol (L/PR)Z = 18100 N/cm il fe< fst

Panel failing stress: .
rr + be/b

= 15600 N/cm® > 3

1+ rbrt

14
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Combined stresses:

2
- = L) L - = 29 i i d

fhoop pR/t, =26.9 x 378 46/.343 700 N/em” at limit loa
f =f =-18300 N/cm2 at ultimate load
axial e

=/ L. 2
F :/faxial + f‘1210011:‘ faxiall fhoop 42000 N/em
Fty = 45800 N/cm2 >F

For Condition 2 at limit pressure at T=367°K, fhoop = pR/t = 24.8 x 378.5/.343
= 27400 N/cm2

2
Ftu/l. 4 = 27600 N/cm” > fhoop

(2) LH2 Tank - Concept A - Integrally Stiffened and Overwrapped at

Sta 3050, Condition 1

b= 22.1cm tp= .208 em r, = .222 rbrt = ,471
d= 4.80 cm tst=_.442 cm r, = 2.12
= 4.90 cm ‘t} = ,305 cm L = 76.2cm Nappd = -6130 N/cm (ult)
Local buckling:
K, =6.13 (Fig. 1 or Ref. 1)
2
t
¢t =.904K E () =4300 N/em®
cr c b
Required stiffener rigidity.
m= 1,794 c=1,123

Yreq'd = 122, 5 for buckling

Applied stress:

_ . _ 2
f, = Nappd/%f 20100 N/cm
For post buckling.

Y req'd = 576

Yactual = 607 for b'e/b =.5
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Buckling of the outstanding flange:
£ =31200 Nfem® >f
st c

Panel flexural instability for the skin edge stress equal to £ = 31200 N/cmz:

f /f =.138
cr e

be/b =, 452
bt /b =.290
e
Radius of gyration:
=
R 1.479
L/ Po = 51.6

f ,=32200 N/cm2 =~ f
col e

No plastic correction is required since the proportional limit stress is approximately:

3 3 2
fpl— 7 Fcy = 32000 N/cm

Panel failing stress:

= 2000 N/ cmzz f

£ c

pl

Combined stresses:

2 2 v
Fi/{axial + fhoop - Lo xial fhcmp N Fcy
f . _=f =-31200 N/ em? at ultimate load
axial e .

Therefore, the maximum allowable hoop stress is:

fh00p = 22300 N/cm® at limit pressure (see criteria)

Overwrap Design

From Reference 16, the liner hoop stress is:

t
R 1 yPxq E
=P8 _ [ €z+pR(1--—---)]—ww———

—_— E t
h ; 2 ¥
oop t, t.l 21 p E‘l‘,& Ewtw
and the liner axial stress is:
f = -——-pYR
axial 2t ¢
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where the subscript "w'' refers to the wrap, Py is the pressure causing axial stresses,
and:

f
_ _prestress
i E
o W
=367 K, the cure temperature

€ +(a-a,)(T-

Tinitial)
where Tm tial
Hoop stress in the wrap:
P E
1 v X ww

f =— [ €, +pR(1 -— ]

W tw ys ,ﬂ 5 Ej Iff + E t
Material properties obtained from Tables 3, 4, and 5 for the overwrap analysis:

2219.T87 §—GLASS
20°K 367°K 20°K -367°K
E,N/cm? 8.75 x 10¢ 7.14 x 10¢ 6.28 x 10° 572 x 10°
Fm Nicm? 64000 38600 190000 138000
y. Nfem® 45800 31200 — -
a, cmlcm o 16,0 x 10" - 2.88 x 10°¢ —

Wrap prestress for S-Glass is:

£ = 82800 N/cmZ
prestress

For Condition 1, at limit pressure p= 26.9 N/cm and T = 20°K.

=2 i
fhoop 2300 N/cm (allowable liner hoop stress)

fw = 87100 N/cm2
For Condition 2, at limit pressure p = 24.8 N/cm2 and T = 367°K:

f = 15500 N/cm2

hoop
£, = 97600 N/cm2
FW/1.4 = 98600 N/cm2 > £ (see criteria)

For Condition 4 - post-cure, at T = 367°K:

2
fhoop = -21900 N/cm
2
1.15 =2710 iteri
Fcy/ 5 = 27100 N/em” > fhoop (see criteria)

These results are included in Tables 7 through 12 along with the results of calcula-
tions carried out for other configurations and concepts.
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3) LH2 Tank - Concept C - Sandwich Design at Sta 3050

t2 Outer Face: 1581 Glass Cloth
Outer Face | F, = 88200 N/cm?
N R --_‘i 2
T F ., = 72200 N/cm
_l c h, _ B =2.91 x 10° N/em? at 20°K
eIt l 1 Paper Core: HNC-3/8-6020)E-2.0
UM 2
Inner Face 1‘ G, = 2620 N/em
t 2
% 1 E, =20400 N/em” at 20°K
tl =.340 cm Inner Face: 2219-T87 Aluminum Alloy
tz =.051 cm See previous pages for mechanical

properties
c =4.60 cm '

h =4.80 cm
(¢

Inner face thickness:
For Condition 2 at limit pressure and T = 367°K
roop = PT/ty = 24.8 % 378.5/.340 = 27600 N/cm?
Ftu/1'4 = 27600 N/cm2 = f (see criteria)

hoop
Condition 1 is less critical :

Outer face thickness:

A minimum of two layers of fiberglass is recommended for manufacturing and
quality assurance reasons by GAC's materials and manufacturing groups.

General Instability, for Condition 1 at ultimate load: Following the analysis method of
Reference 19;

Face sheet stiffness at T = ZOOK:
E.t =8.75x 105 x .340 =2.98 x 10°

E,t, =2.91 x 10% x .051 = .15 x 108

£=3.13 x 10°, and

E_t,.
22 _ 0504

E,t
6 11
teff-—tl X EEt/E1t1=.340x3.13x10 /2.95x10 =,357 cm

=FyEt/ZEt=4,63x.15x 106/3.13 X 106 =,222 ¢m

y
ch =378.46 +,17 + .22 = 378, 85 (negligible correction)
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Radius of gyration:
o=h, VEgty/Ety +[1 * Eth/Eltl]
P=4,82 /.0504/1.0504 =1.029 cm
Rfe = 378.85/1.029 = 368
from which the knockdown factor ¥ o 18 obtained from Figure 4.2-8 of Reference 19,

Y =.43
c

Uncorrected shell buckling stress:

f,, =21 F #/R=2.1x8.75% 108 /368 = 49900 N/em>

Shear crimping stress:

f =h = 4,82 x 2620/.357 = 35400 N/cmz

crimp chz/teff
Buckling coefficient:

= - . =, 85
Kc 1 cho1/ 4 fcmmp
Critical elastic buckling stress:
2
f = vy K f =.43 % .85 x 49900 = 18100 N/cm
er gy cco

Applied axial compressive stress, Condition 1:

¢ =6130/.357 = 17200 N/cm>

appd
Plasticity correction:

f = -17200 N/’cm2

axial

_ 2
fhoop = 27600 N/cm

2 2 !
_ j B . I
F ‘/fa +fy -f £, £F. (vield criteria)

from which:

_ v 2 _
foxial . " Ecy/ 1+R -R where R = fhoop/f’axial
yield

R =27600/(-17200) = -1. 61

f.':u-ti al

- .439 F = 31700 N/cm>
yield ¢y

Using the plasticity reduction curve of Figure 8:

fcr
el _ s5m
amalyield
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from which;

f
cr

faxial

= ,570 (no plastic correction)

yield
and

f =18100 N/cm?
Ccr

Face wrinkling:

¢ (Ect) 1/2
WI‘el =0.33E -—ITC-

for the aluminum face: y
1/2
20400 x . 340 2
f _ 6( ) = 38000 N/cm
Wrel—0.33x8.75 x10 8.75x106x4.60

Using Figure 8 in the same manner as above:

2
fwr =26900 N/em > fcr

Tor the fiberglass face: 1/2
6 20400 x , 051 2
fwr =0,33x2.91 x10 o = 8400 N/cm
el 2,91 x10 x 4.60

Applied fiberglass face stress:

6130 - 17200 x . 340

£= ,051

= 5500 N/cln2 < f
wT

These results and those for other honeycomb configurations are given in Tables 14
and 15. i

6. Design Results

Unit weights at two points on the upper surface of the LH, tank have been de-
termined for the different concepts. These weights are summarized in Table 16. The
results shown are for the minimum weight cross-sections derived using the analysis
of Section 5. Integrally stiffened Concepts A (Integral Stringer) and B (Z-Stiffened),
result in significant unit weight reductions relative to the all aluminum design when
prestressed circumferential overwrap is applied. The weight reduction is greater for
the panels with the lower axial load. The overwrap prestresses listed in the tables
are the maximum values which can be used while also satisfying the design criteria.
In general, a higher value of the wrap prestreas will result in a greater weight re-
duction. The sandwich, Concept C, results in a slightly higher unit weight relative
to the baseline,
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Unit weigﬁts at two stations on the LO, tank have been determined for the base-
line and overwrapped concepts. These are presented in Table 17. Again, the over-
wrap prestresses listed in the tables are the maximum values which can be used.

It should be noted that the unit weights given in the tables are idealized weights
and that the unit weights of the actual structure would be somewaht higher.

7. Manufacturing Options and Estimated Cost

As part of the evaluation of the various concepts, alternative methods of fabri-
cation were reviewed by the Grumman Product Manufacturing Department. The alter-
natives were appraised on the basis of cost, manufacturing complexity and the require-
ments for successful development technology. A system of baseline values was estab-
lished for each of these parameters. This permitted the evaluation of each alternative
in terms of dollars per kilo or dollars per square meter. Welding and X-rays were
estimated in dollars per linear meter. Precision of the dollar value assigned each
process or operation was not as critical as the level of manufacturing difficulty, as
reflected in the cost of the various designs.

Estimates were based on industry-wide manufacturing facilities. Limitations of
the existing capacities for machining, rolling, brake-forming, chem-milling etc.
were considered. Costs of tooling and cost of test facilities that were required be-
cause they were not commercially available were amortized over the full tank pro-
duction as non-recurring costs.

The approximate dimensions of the Orbiter tank cylindrical portions are given
below.

TANK ' DIAMETER, CM LENGTH, CM CIRCUMFERENCE, CM
LQ,, 757 _ 233 . 2376
LHS 757 2037 : 2376

The conical region of the LOX tank has an axial length of about 368 ¢m, a
small diameter of about 590 cm and large diameter of about 757 cm. The developed
cone requires differently shaped rectangular envelopes, depending on the number of
equal-size central angles of the developed cone selected. The envelope dimensions
are illustrated in Fig. 9 for a single- and a seven-segment option. They are tabulated
below for a number of options.

NUMBER OF
EQUAL CENTRAL x
ANGLES CENTRAL ANGLE {HEIGHT) {WIDTH)
1 794 deg 2183 cm 686 cm
2 39.7 1165 458
3 26.5 786 414
4 19.85 5932 397
7 11.35 deg 339cm | 385 cm
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The available sheet sizes depend on the thickness required. For comparison
with the area {circumference x length) of the cylinder and (height x width) of the coni-
cal segment envelopes, the sizes are:

TRANSVERSE LONGITUDINAL
THICKNESS DIM DIM
6.35cm 295 ¢cm 856 cm
5.10 290 808
2.64 366 1880
0.95cm 366 cm 2500 cm

The schedule of thicknesses for the stations and designs for which costs were
established are listed below. Only the baseline and its variants required thick sheet;
all the other designs required less than the 0.95 cm minimum gage.

a.

MANUFACUTRING OPTIONS. Prior to discussing estimated costs, a des-

cription of the alternative designs and methods of fabrication is presented. Since the
LOX tank is thin and monocoque in all variants, no thickness alternatives exist. For
the LHy tank baseline configuration, the thicknesses designated A, B and C offer
alternative manufacturing approaches.

1)

(2)

(3)

Stock size: 6.35 cm x 295 cm x 856 cm. The stiffeners on one side of

the plate are integrally machined to the desired height. The ring frame
flanges on the opposite side of the plate are also integrally machined. After
the tank has been overwrapped, the frames are riveted to the flanges. The
design implications of this concept are designated on Fig. 10 through 14.

Stock size: 5.1 x 290 x 808 cm. The stiffeners on one side of the plate
are integrally machined to their designed height. After the metal is
welded and overwrapped, the frames are bonded to the tank's external
surface. The design implications of this concept are designatedon
Fig. 10 through 14.

Stock size: 2.54 x 366 x 1880 cm. Flanges to be used as stiffener attach-
ments are integrally machined on one side of the plate. Extrusions are
riveted to the flanges in order to achieve the stiffener's designed height.
Frames are applied as in (2). The design implications of this concept are
designatedC)on Fig. 10 through 14.

Two methods of fabrication for the above design may be used to construct the
LH2 tank's cylindrieal portion:

(1)

22

The cylinder may be constructed from four 1880 cm-long x 283 em cylindri-
cal-arc segments which are welded together. Each segment is composed
of a plate (or plates) machined while flat and then formed into arcs of a
circular cylinder. These segments are machine welded in a fixture (See
Figures 11 and 12,) Material stock sizes impose constraints on this pro-
cedure.
stock, it is 856 cm. Since the tank length is 2037 cm, the segments fabri-

cated from 5.1 (B) and 6. 35 (A) cm stock must be spliced twice and the 2.54 cm

thickness plate must be spliced once, as indicated in Fig. 11.

The maximum length available for the 5.1 cm stock is 808 cm, for 6.35 cm



(2) The cylinder may be fabricated from plate (or plates) machined in the flat
and formed to a longitudinally split cylinder with a 378.5 cm radius. Each
longitudinal split line and each junction of adjacent cylinders is machine-
welded after the mating parts have been buited and held in a fixture. Be-
cause of the variations in sheet width with thickness the @design requires 8
cylinders, the(B)designs 7 cylinders, and the(C)designs 6 cylinders to
achieve a cylinder length of 2037 cm. See Fig. 13 and 14.

The overwrapped baseline and the baseline designs are closely similar, so no
additional discussion of the integrally stiffened fabrication is required.

The design alternatives for the zee-stiffened design are confined to the ability
of forming a tank from rolled plate approximately .95 cm thick. Available stock
material in .95 cm thickness is 366 cm wide and up to 2500 em long. For the Orbiter
. LHs tank cylinder, (circumference = 476 cm, length = 2037 cm), two alternative
fabrication methods are feasible.

(1) Taking advantage of the material stock length, the sheet is rolled and welded
along the longitudinal axis using 6.5 or 7 sheets. Each of the sheets is
chem-milled leaving thickened lands at the edges and pads for blind fastener
and frame connections, Frames and stiffeners are bonded to the tank ex-
ternal surface after overwrapping See Figure 15).

(2) The cylinder is fabricated by rolling the sheets into cylindrical seq-
ments 757 ¢m in diameter. The ends, butted and held in a fixture, are
machine welded. Segments of 366 ¢cm maximum arc length are formed and,
by butt welding six together, the 2037 cm length can be achieved. Frames
and stiffeners will be attached after overwrapping. Chem-milling operations
will be identical with Method 1 (See Figure 16). It should be noted that
the total weld length for both methods is approximately equal.

Method 1): 2037 x 7 = 14,260 cm
Method 2): 2376 x 5 + 2037 =13920 ¢

For the honeycomb design, three alternative methods of construction are avail-
able (see Figures 17, 18 and 19) based primarily on the size of existing autoclaves.

(1) The largest autoclave required would accommodate a full-length vessel
2037 cm long x 757 cm in diameter. The vessel's metal parts could be
assembled either as girth welded circular cylinders 366 c¢m long and 757 cm
in diameter, or from seven formed circular segments of 378.5 cm radius
of 2037 e¢m axial length and 338 cm arc length. The vessel shown in Fig.
17 would be pressurized (with sealing closures retained mechanically by
longitudinal struts to avoid applying axial load on the cylinder) to round and
stabilize its shape. The honeycomb core would be adhesively bonded and then
the glass cloth face sheet would be tautly wrapped and bonded.

(2) Suppose an autoclave to be available which can accommeodate a /57 cm-~
diameter vessel but a shorter length than 2037 cm. The tanks would then
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be made of right circular cylinders whose axial length equals the sheet
widthof 366 cm. Since the circumference of these cylinders, 2037 cm, is
smaller than the 2500 cm sheet length, a single longitudinal joint will be
required. The number of cylinders girth welded together before auto-
claving on the honeycomb core and glass cloth will be determined by
available autoclave dimensions. The minimum diameter is 757 cm and
length 366 cm. In all other respects the fabrication proceed as in Method
1.

(3) Suppose a long but shallow autoclave were available. Since the cylinder is
only 2037 em long, it is possible to use seven circular-arc segments of
338 cm arc length. The chord length would be 329 em and the height
38 cm. The 2037 cm x 329 cm x 38 cm envelope of these segments defines
the autoclave required. The honeycomb core would be adhesively bonded
and then the two layers of glass cloth superposed and bonded. The weld
details and the splice between these segments is indicated in Fig, 18 and
19.

b, COSTS. Theobjectiveofthistaskis to select, onthe basis of cost savings, the
best of the designs studied in the previous sections of the report. In order to accom-
plish this goal, total program costs for each of the concepts were estimated and com-
pared to the baseline tank. Total program costs are made up of the transportation and
manufacturing costs discussed below.

The concepts for which program costs were evaluated are those listed in Table
18. PRD was eliminated from use as an overwrap material because there were no
weight savings for it relative to the S-glass overwrapped concepts while its manu-
facturing costs were higher than those for S-glass. The use of glags or aluminum
core in the honeycomb concept was eliminated for similar reasons.

1. Transportation Costs. - Unit transportation cost, expressed in dollars per kilogram,
is the value of an increment of weight added to any component in the Shuttle stack
{orbiter, HO tank, or Booster) while at the same time maintaining a constant mission
performance. This cost was determined by the Grumman Shuttle program to provide
a basis for cost effectiveness tradeoffs during the Shuttle systems evaluation and
selection study. A umit transportation cost of $22, 000 per kilogram was specified for
the HO tank, and is used in this evaluation. The unit weights of the concepts, summa-
rized in Table 18, were used to estimate weights of the cylindrical portion of the LHo
tank and the cone-cylinder portion of the LO2 tank. These results are shown in Table
19. For the LHy tank, the area was reduced by 33.4 m2 (7%) to allow for non-typical
structure in the region of the Orbiter aft interstage fitting. The unit weights, multi-
plied by their respective areas, give the theoretical cylinder weights shown. These
weights, multiplied by the non-optimum factors (NOF) described below, result in the
estimated cylinder weights. The product of the cylinder delta welghts and the unit
transportation cost is the delta fransportation cost also listed in Table 19.

The NOF is the ratio between likely actual and theoretically possible minimumr
weights. One should expect that the NOF's will exist. They account for the effect of
drawing tolerances (permitting larger than minimum dimensions for manufacture and
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inspection), fillets, weld lands, extra plastic at joints in honeycomb and other weight
raisers which were not considered in obtaining an ideal weight. The weights depart-
ments of aerospace companies must include these effects in order to derive useable,
reliable weight estimates in preliminary design. They have accumulated statistical
data on different types of structures in order to make their predictions. The GAC
Weights Department considers its factors accurate to within 5 to 10 percent.

2. Manufacturing Costs. Manufacturing costs are the costs of producing the flight
articles and include the following:

e Material e Tool design labor
e Tool material e 'Tool manufacturing labor
e Production labor ¢ Manufacturing management

& Quality control labor
A breakdown of manufacturing costs is given in Table 20.

3. Program Costs. - The unit recurring and non-recurring manufacturing costs are
converted to total program manufacturing costs for each concept in Table 21. Delta
manufacturing costs for the program are also determined. Total program delta
costs are listed in Table 22. These combine the transportation delta costs for Table
19 and the manufacturing delta costs from Table 21.

8. Results

For the LHo tank, Concept C, the honeycomb stiffened aluminum pressure
vessel, has the potential for the greatest cost savings. Concept B, bonded-on Z
gtiffeners, also has potential for significant cost savings. It can be seen in the :cable
of total program costs (Table 22) that the LHg tank cost savings are due primarily to
the manufacturing delta costs rather than the transportation costs. In the table of
manufacturing cost breakdown, it can also be observed that the controlling items are
the recurring material and manufacturing costs. For Concept A, these items total
$157 million, while for Concepts B and C these items total $66 milliqn and $62- mil-
lion respectively. The cost difference of approximately $93 million is primarily a
consequence of machining integrally stiffened planks from thick billets for Concept A.
The use of thinner gage sheet and plate in Concepts B and C therefore accounts for the
cost savings while the structure remains competitive from a weight viewpoint.

No cost savings were obtained for the LO2 tank.



B. TASKII - EXPERIMENTAL EVALUATION

The major cost saving shown in Task I was achieved on the LH, tankage. There-
fore, experimental verification of the ease of fabrication and of the structural adequacy
of the novel sandwich construction was undertaken. For this purpose, a subscale
cylindrical model was designed to represent the full-scale Shuttle tankage, Two test
articles and a set of end-dome assemblies were fabricated for subsequent structural
testing.

1. Modeling and Design

The configuration of the honeycomb reinforced pressure vessel is such that
direct scaling down of the full sized tank is not possible; e.g., the honeycomb cell
size and the number of plies in the composite outer face cannot be scaled. The table
below gives the critical dimensions of the full-scale and 1/6-scale models.

Full Scale Idaal Model | Actual Model
Quter Facing Glass Cloth, t, cm 0584 0083 0584
Honeycomb Cell Depth, em 4.60 651 673
Honeycomb Cell Size, cm .956 160 A48
inner 2219 Al Alloy t, cm .340 06572 0762
Cylinder radius, cm 378.5 63.67 63.67

The design procedure for the model was based on the following considerations,
which reflected practical material limitations while assuring a valuable structuratl
model.

First, the inner face thickness was determined such that the ratio of longitudinal
stress to hoop stress in the model would be the same as in the full sized tank, while
at the same time approximately maintaining the full scale margin of safety. This
stress ratio is shown on the failure criteria curve in Fig. 20. Then the outer face

-thickness was set at the minimum of two layers recommended by Grumman's Materi-
als and Manufacturing Groups. The core selected for the model was the only com-
mercially available paper honeycomb with a small cell size. The core depth required
to provide strength for general instability was then determined for this configuration.
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The test sections are approximately 203 em. in length, not including transitions
to the non-representative 6061 aluminum alloy test structure. This test structure
consists of end domes, Y-rings, and tank skirts, and provides for internal pressur-
ization, external load application, and support. The overall configuration of the
model is illustrated in Figure 21.

2., Materials

Typical mechanical properties of the model miaterials were used in all sizing
calculations and are given in Table 23. Materials evaluation was carried out at Struc-
tural Composites Industries (SCI) in order to determine mechanical properties for use
in predicting the strength of the test model.

a. COMPOSITE FACING MATERIAL. The criteria for selection of facing materials
included: adequate strength from 219K to 367°K in service; a vendor limitation on the
paper honeycomb cure temperature to 394°K max; insensitivity to likely variations in
temperature within a large autoclave: and sufficient bench life with good handling
characteristics. Based on vendor data, the candidate prepregs were Cordopreg
E-293/7581-1550 and Reliapreg R-1500/7581. Initially, Cordopreg was the first
choice because of its high room temperature strength, but its high safe lower cure
temperature was outside acceptable limits. Tensile and flexural tests were con-
ducted on laminates of these materials. Two- and eight-ply vacuum-bagged laminates,
cured at 3940K, were tested at room temperature and at 367K as ASTM D638 tensile
coupons. The results, shown in Table 24, revealed that Cordopreg exhibited signifi-
cant strength reduction at 367°K, suggesting that the cure temperature was too low.
Two- and four-hour cures at = 149K increments between 367°K and 421°K were applied
to a series of vacuum-bagged twelve-ply laminates. Triplicate flexural room-tem-
perature tests, reported in Table 25, showed that the Reliapreg material had a safe
lower limit cure temperature of 367°K compared with 408°K for the Cordopreg.

b. HONEYCOMB CORE. The honeycomb core material selected for use in the sand-
wich construction is TUF-COMB 200 paper honeycomb in .48 cm cell size, .064
specific gravity. The height is . 673 cm. The paper core can be honded with basic
sandwich adhesive and bonding techniques. However, an upper temperature limit of
304%K is recommended by the manufacturer since the paper may become brittte. As
discussed previously, this maximum bonding temperature imposes some limitation in
the processing and selection of candidate adhesive and skin-facing materials.

Shear strengths and moduli of TUF-COMB 200 honeycomb were determined on
compressive plate shear specimens. Test samples 5.08 x 17,8 x 1.27 cm thick were
1aid up on steel plates using FM-123-2 adhesive film and cured in an oven at
3939K for 4 hours. Tests were conducted in accordance with MIL-STD-401B. In
the L-direction, the tests were run at room temperature, 393°K and 88°K; in the
w-direction, the tests were done at room temperature only. Testing was accomplished
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on a Baldwin test machine at a . 063 cm/min loading rate. All specimens exhibited
core shear failure at the ultimate loads. The teat results are given in Table 26.

Flatwise compressive properties of TUF-COMB 200 honeycomb were developed
from sandwich panels fabricated using both the primary and alternate composite facing
materials selected for the sandwich tank construction. The sandwich panels had a
chemically milled 2219-T62 aluminum sheet for facing on one side and 2-ply glass-
laminate facing on the other side to simulate the cylindrical tank wall cross-section,
The honeycomb thickness was 1,27 cm. Testing was in accordance with MIL-STD-
401B. The compressive loads were applied to the specimens which were 5.08 cm
square through a spherical loading block of the seif-aligning type. The tests were
conducted at RT and 367°K. Test data are presented in Table 27.

Flatwise tensile specimens were prepared from the same sandwich panels used
in the compression test, The test specimens were subjected to additional thermal
soak at 3939K for four hours during the bonding of the aluminum loading blocks to the
facings. The specimens were placed in a self-aligning loading fixture and the loads
were applied at a constant rate of 127 cm/min cross-head speed until failure oc-
curred. Tests were conducted at RT and at 367°k.

The results of the flatwise tension (Table 28) show a considerable difference in
the strengths and mode of failure between two sandwich panels fabricated from the
primary and alternate composite facing materials. The honeycomb core used was
Hexcell TUF-COMB 200-3/16-4. 0. As noted previously with the 2- and 8-ply laminate
tensile strength test, higher strengths were obtained from the sandwich specimens
utilizing Reliapreg R-1500 facing material. The failure occurred in the adhesive
at the core/aluminum interface for the Reliapreg facing panel tested at 367°K. The
failure of the Cordopreg facing panel at 3670K occurred in the glass facing, which ver-
ified the relatively poor strength of the Cordopreg material cured at 3339K.

c. ADHESIVE. A literature search and contaets with various material suppliers were -
made to select candidate adhesive for bonding honeycomb core. A processed ad-
hesive in a film form was preferred and selected over a paste type for convenience and |
ease of application, uniformity in thickness, and generally longer bench life at am-
bient condition. FM-123-2, a modified epoxy adhesive manufactured by Bloomingdale
Department of American Cyanamid Company, was gselected aa a primary candidate
material, A recommended 380”K cure temperature of the adhesive is compatible

with the maximum temperature established by the paper honeycomb. Test data avail-
able from NASA-MSC suggested that FM-123-2 is a good candidate material for eryo-
genic application. An alternate candidate adhesive was selected, This was Reliabond
391-1, a modified epoxy film, similar to FM-123-2 in processing characteristics, but
with higher reported strength properties. FM-123-2 was selected,

d. ALUMINUM ALLQY WELD STRENGTH. The results of quality assurance tests of
welds between 2219-T81 components are reported in Table 32 and are consistent with
that expected. The strength of the unusual girth welds between the 2219 aluminum
transition ring and the 6061 aluminum end domes and skirt asgembly is established by
the data shown in Table 33. These data establish that the weld is stronger than thn
6061 base metal.
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3. Testing

Test conditions which are representative of the full sized LH, tank environ-
ment have been formulated for the geale models. These conditic;ns2 correspond to the
flight loads discussed in Section 11, A. 2,

Since there does not appear to be the structural necessity of performing the
more complicated and expensive testing to the exact environment of the full sized
tank, some simplifications have been made. LNg will be substituted for LHy as the
cold load test pressurization medium, and hot air is to be used for pressurization
in the hot load test., The external loading will also be simplified to be a pure bending
load rather than a combined axial and bending load. The primary purpose of the tank
testing, which is to verify the method of structural analysis used in sizing the full
gized tank, will still be satisfied if these simplifications are made. The simplified
test will demonstrate whether the buckling strength of the composite reinforced pres-
sure shell can be predicted within reasonable limits when the complications of prop-
erty corrections at cryogenic temperatures, internal pressure stabilization, bi-
axial stresses, efc. are taken into account.

a. TEST SEQUENCE. An outline of the test plan is presented in Table 29 for the two
test articles. Rather than test each article to ultimate load and failure in one of the
two critical conditions as would be the usual test procedure, it is planned to perform
ultimate and failure loading for the end boost (axial compression in shell wall) con-—
dition only. Test data on structural instability (with its large scatter) is felt to be
more useful than the burst test data which would be obtained from a post-orbit-in-
sertion condition test. Therefore, only one article will be tested in the post-orbit-
insertion condition and in addition, it will only be tested to the limit (maximum op-
erating) load level in order to keep the stresses in the shell wall in the elastic range.
With this test procedure, the test models will be tested to an equivalent full sized
tank environment and a maximum of useful data will be obtained.

An additional alternate test condition is proposed because of the honeycomb
structure of the tank wall. It consists of filling the tank with LH2, and maintaining
the tank in the full condition for a time pe riod before emptying. The purpose of the
test is to determine the susceptibility of the honeycomb to ''cryobombing'’. The
phenomenon can be explained in simple terms as follows: The temperature of LH;
at onc atmosphere pressure is 200K while the melting point of air is approximately
559K, Thereiore, any air contained within a cell of the honeycomb core will solidify
when the tank is filled with LHg and the wall temperature reaches the fluid temp-
erature. If in addition a minute hole or porosity exists in the fiberglass outer face,
additional air will be drawn in because of the reduced pressure within the cell. This
additional ait will also solidify. Under these circumstances, a tank standing full of
TLHg could, over & period of time, accumulate solid and some liquid air within a cell
(or cells). When the tank is emptied of LHg and the temperature of the air within
the cell subsequently rises above its boiling point, a sudden pressure increase will
result from the change of state. The smallness of the hole or porosity would prevent
the pressure from immediately equalizing itself with the external atmosphere and
failure of the core could occur. The pressure of the gas can be determined approx-
imately using the gas law, P= wRT. The density, w, of liquid air is 880 kg/m3.

If the cell were one-quarter full of air, the density after change of state would be
approximately 220 kg/m3. The temperature of air somewhat above its boiling point
is 909K and the gas constant, R, of air is 287 Nm/kgOK. The pressure of the con-
strained gaseous air would then be:
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4 e 570 N/om2

P =wRT =220 x 287 x 90 x 10~
which is greater than the strength of some of the honeycomb cores considered in this
report, If testing shows that a "cryobombing" problem exists, the core and fiber-
glass faces will be required to have built in vent holes distributed over the tank sur-
face and will result in increased costs for this concept. The LH, tank fill test would
be scheduled to occur after 1imit (maximum operating) strength for the flight loads
has been demonstrated.

b. CALCULATION OF TEST LOADS, The size of the sub-scale model of the LH,
tank was established so that the aluminum alloy inner face would be working at ap-
proximately the same stress level as the full sized tank,

In the full sized tank for Condition 1 (end boost, on the compression side), the
stress ratios, R, for a positive margin of safety (see Figure 20) are:

/Fc =_039

Ra‘xial - f:a,‘.!s:ial y

Rh00p= fhoop/ Fcy = +.,66

Therefore, in the test tank at T = 78°K, the axial and hoop stresses on the com-
pregsion side are:

f . . =-.39x 41900 = -16300 N/cm”
axial

_ | _ 2
fhoop =+, 66 x 41900 = 427700 N/cm

From the test results for two layers of R-1500 fiberglass at room temperature:
E (0° direction) = 2.20 x 10° N/em®
E (90° direction) = 2.06 x 106 N/cm®

and
= . ‘ 6 2
= JVE(0) x E (90) =2,12x10 N/ecm

Therefore, for elastic properties at room temperature:

Eg,

(Et), =2.12 % 105 x 0584 = 124 x 10°

(Bt =7.24 % 10% x ,0762 = . 551 x 10°
T (Et) = .675 x 10°
=225
(Bt)go/ (EY) )
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The configuration of scale model wall cross-gection is:

6
g = by Z(tEt! = . 0762 .675 x 10 .
.05+84 eff "al (EO),, .551 x 10°
FG Fal L (el i 1T Ik -
I -T—f togp = -0934 cm
.673 ,739cm 6
T { { I — _ Z(Ety _ .739x.124 x10
AL y= - G
T z (Et) . 675 x 106
. 0762 ¥V =.136 em
63. 50cm .
ch = 63,50 +.038 +.136 = 63.67 cm
3 R 2
fhoop —pch/teff = 63,67 p/. 0934 = 27700 N/cm

p =40.6 1\1r/cm2
The LN2 head préssure is approximately:
Ap = 810 kg/m® x 2.67m x 9,807 N/kg ~ 2.1 N/em>
The system pressure is therefore: |
p =p- Ap=40,6 ~2.1=38,5 N/cmz
sys

The axial stress on the compression side of the model must be:

= ~16300 N/cm2

_ faxial
and
_ _ 2
Naxial ~ faxial eff = M/m R” + Pgys R/2
Therefore: -16300 x .0934 = -1522 = M/7r (63.67)2 +38.5 x 63,67/2
and M = -(1522 +1226) x 12740 = -35.0 x 20° om N at ultimate load.

At 1limit load:
M=-35.0 x10%/1.4 = 25,0 x10% em ™
TFFor Condition 1 - end boost;

p =38.5 N/cm2
Sys

- o 2
p wpsys +Ap=40.6 N/cm

M =35.O}:1(‘J6 cm N
ult
6

M,, ==-25.0x10" cm N
lim
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Na:t:iall

T = 78%K

Following the procedure of the design criteria,’ the system pressure for Condition
2, post orbit insertion at T = 3670K, can be determined.

= -1522 N/em (ultimate, compression side)

F, /1.4 =40900/1.4 = Pyys R/t , = Pgys X 63.5/.0762

. _ 2
from which: Pays = 35.1 N/cm
The test loads are summarized in Table 30.

¢. PREDICTED FAILING STRESSES. The shell instability stresses for the scale
‘model are calculated here using the methods of Reference 19,

The radius of gyration of the composite honeycomb sandwich is:

p=h_V(Et) fg/(Ei:)Ell + [ 1 + (ET) g/ (Et)al]
p=,73% x/.225/1.225 = ,285 cm
and, R/P=63.67/.285 =224

The "knockdown" factor which relates the average experimental results to the pre-
dications of classical, small-deflection shell buckling theory is obtained from the
correction curve in the above reference.

For R/e =224, ¥, =.47

The uncorrected shell buckling stress can be calculated at the LN, temperature of
779K as:

£ =2.1E P/R=2.1%8.07x 10% /224 = 75, 600 N/cm?
The shear crimping stress can be calculated as approximately:
= - . — 2
fcrimp =h, Gcw/teff = .739 x 13900/.0934 = 110,000 N/cm
where the core transverse gshear modulus has been approximated as:
O _ )
Gcw (78°K) _Gcw (RT) x Gcl {78 K)/G(c1 (RT)
GcW = 7800 x 19000/10700 = 13900 N/cm2

using the test data of Table 23. The buckling coefficient is:

=1 - = ,828
K, 1 f0/4 fcrimp
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The critical elastic buckling stress of the shell is:

f =9y K f =.,47 x .828 x 75600 = 29400 N/cm2
I‘el c CcCoO

The plastic buckling stress can be obtained from the elastic buckling stress as [ol-
lows, using the octahedral shear stress criteria for combined stresses.

- /.2 2 '
f —ﬁxial * fhoop - faxial fhoop < Pcy

Using the above expression, an axial stress at which yielding occurs can be de-
termined for the test tank.

/ 2
[ =F +f 1+R" -R
amal‘yiel a oy

where

R= fhoop/fa.scial

The applied axial and hoop stresses in the aluminum pressure shell were determined
in the previous section, from which: '

/f

fhoop asxial = 27700/(-16300) = -1.69

and

= 424 F
yield' '

= .424 x 41900 = 17,800 N/cm>
yield'

faxial1

famial ,

The critical plastic buckling stress for the shell can now be obtained by using a
standard plasticity reduction curve (Figure 8) for uniaxial compression and taking
combined stresses into account by substituting the axial 'yield stress for Fcy'

1. Masial = 29400/17800 = 1.65
el 'yield'

and from the figure:

£/t . =,92
cr amal,yie1 ar

Therefore:

fcr = ,92 x 17800 = 16,400 N/cm2

which is approximately equal to the applied compressive stress in the alrminum alloy
inner face.
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The stabilizing effect of internal pressurization can be estimated using the data
presented in Reference 21 for monocoque cylinders. An equivalent monocoque cylin-
der thickness, teq, can be determined for the sandwich shell. For a rectangular
section, the radius of gyration is:

o=y TA'=/ 6t2/12) (/bt) = 1/3.46

Therefore, the equivalent thickness is:

teq =3,46 »
and

R/teq =R/3.46p =224/3.46 = 64,8
for the scale model. The increase in buckling stress due to internal pressurization
ig plotted in the above reference as a function of the parameter (p/E) (R/t)2. Using
the above value of R/teq’ the parameter is evaluated as

40.6/8.07 x 10% (64.8)% = 0211
from which

AFcrp =,030 E(teq/R)

Again using the curves of the reference, the buckling stress of an unpressurized

cylinder with the same R/teq can be determined as follows.

. The buckling stress of an axially compressed cylinder is given by the expres-
sion
_ 2
F,.=+905K E (teq/L)

where K, =K (Z)yand Z =, 95 Lz/Rteq. Rewriting these expressions,
2
t L) =.95¢
oy’ D) o/ 2R

F,. =.86 (KC/Z) E (teq/R)
For the scale model, L/R = 3. 2:

Z = .95 (L/R)> R/ty, =95 3.22 x 64,8 = 630
from which Kc =210 for average data.

Therefore:

F, . =.86x 210/630) E (teq/R)
or

F,.=.287E (teq/R)
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The increase in elastic buckling stress due to internal pressurization is:
AF /F__=.030/.287 =.104
cT cTr

P
or approximately a 10% increase. With plasticity correction, the difference will be
even smaller. The stabilizing effect of internal pressure can therefore be neglected
because the increase in buckling in small compared to the scatter in shell buckling
data,

Local instability of the face sheets can also be determined using the methods
contained in Reference 19, Only the wrinkling instability of each face will be checked
since the intracell instability mode of local buckling is less critical than the face
wrinkling mode for the scale model honeycomb configuration.

The critical stress for face wrinkling instability fwr is given by the expression

_ 1/2
le_/E,f =0, 33 (Ectf/Eftc) ,

where the subscript f refers to the face and subscript ¢ refers to the core.

The following calculations are carried out using the values of material proper-
ties at 77°K. For the honeycomb core, the compressive modulus can be estimated
using the data of Table 23.

E, (77°K) = E_(RT)x G, (770K)/Gcl (RT)

E_ = 48400 x 19000/10700 = 85,900 N/em?
and
E_/t_ =85900/.739 = 116200 N/cm®

For the aluminum face:
E,/t; = 8.07 % 108/, 0762 = 105. 9 x 10° N/em®

For the fiberglass face:
E/t; =2.58 X 105/, 0584 = 45.9 x 10° N/em”

The wrinkling stress of the aluminum face is:
[, =0.33%8.07x 108 x (1162 x 10%/105.9 x 10% 1/2
el

¢ =88200 N/em?
Wrel

which is greater than the proportional limit stress. The result will be corrected for
plasticity effects using Figure 8. (There is no interaction with transverse tension for
wrinkling instability).



F =41800 N/em>
ey

£ /F =88200/41900 = 2,10
WI‘e1 cy
Therefore:
f /P =,92
wr ~cy

£ =.92 x 41900 = 38500 N/cm>
wr

The wrinkling stress of the fiberglass face is:

[, =0.33x2.58% 108 x (. 1162 x 10%/45.9 x 10%) 172

I'el

£ = 42800 N/cm2
Wre1

The strength limit for fiberglass is:
F = 49100 N/cm®
Since fiberglass behaves almost elastically,

=f = 42800 N/cm2
w

f T
W I‘eI

The stress in the tank wall can be determined from the applied loads, stress-
strain relations, and strain compatibility. These are given below. Primed quantities
refer to the fiberglass face and unprimed quantities refer to the aluminum face, An
nx! gubseript refers to the axial direction and a "y'" subscript refers to the hoop di-
rection,

N_= (D + (€Y
N = (1) + (Y

1
€ =_..(fx— vfy) + AT

X E

1
€ =1 -vi)y+aaT
y Ty VRt

= 1
€ = =4 - ' AT =
= 5 (f;{ Vi;)-*aﬁ ex

€' =— M- y'f)y+a’ A T= ¢
y @G- vl y
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Combining the above by eliminating the fiberglass stresses results in:
. LEL) ] - [ v/ (EY ] = _(EY ot ]
(fxt) [1 TEtY (fyt) v |1 +5 ) =) N - ¥ Ny +
(Et) (a’-a ) AT

(£, [1 + ((itz)r ] -@h v [1 +_::_’ EE&]: ((EEtt))' [ N, - u’Nx]+

(Et) (o -a) AT

- The values of the material properties at 77°K are:

E = 8,07 x 10° N/em® B =2.58 x 10° N/em®
v=.3 v =.04
a =16.02 x 10”° cm/em®C a’=5.04 x10°° em/em®C
t =.0762 cm t' = .0584 cin
_ - — Q _ 0 - _ O
AT =Ty 1 = Tinitir =77 K - 392 K = - 315°K,

(o™~ a) AT = 3460 x 10~ cm/cm
Substituting these values into the equations:

(ft) x5.13 - (f t) x 0,464 = 4,13 [N ~0.04 N ]+2130
X y x v

(£t x 5.13 - (£.) X 0,464 =4,13 [N -0.04 N ] +2130
y X y X
which are valid for Condition 1 - End boost, or:
(.t) - (£ t) x 0.0905 =0.808 [N -0.04 N ] +415
X y X y
(€ 1) - (£.1) x 0.0905 =0, 806 [N _0.04 N ] +415
¥y X _ ¥y X
from which:
(£.1)=0.810 N_+ 0.041 N_ +456
X7 X v
(f t) =0.810 N +0,041 N_ +456
N y X
and:
! = -
(fxt)- N, (fxt)
£y =N_ - (¢t
(1B =N - @D
The values of Nx and Ny, the distributed axial and hoop shell load, respectively,
can he obtained from the section of applied loads. The constant term corresponds to

the thermal stress developed in cooling to cryogenic temperatures {rom the zero-
gtress (cure) temperature. .
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In the absence of the external applied loads N,x and Ny’ the stresses due to
temperature change only are

. 456  _ 2
f, = fy ==0768 5980 N/cm”, in the aluminum face
and
gt o=t = 20762 2980 = -7790 N/emZ, in the fiberglass face.

x |y .0584

It should be noted that these are membrane {average) stresges in the faces and that
the extreme fiber stresses will be higher.. This difference is important for the
aluminum face since the neutral axis is close to that face, For the case where the
thermal stress in the axial and hoop directions is the same and the applied external
loads are zero, the stress-strain relations can be written as:

1-v

€ = f+a AT
er =LYt rataT
E’
Substituting:
i -6
co— T _ , |
5,07 % 100 5980 -~ 16.02 x 10 x 315
e=—98 <7700 -5.04 x 1075 x 315
2,68 x10

€ =520 x 100 - 5050 x 108 = - 4530 x 1078

6 _ 1590 x 1078 = _4510 x 109 =€

€=2920 x 10
The total strains are equal for both faces but the mechanical and free thermal strains.
are different for each. The thermal stress at the extreme fiber of the aluminum face
can be obtained from the mechanical strain as

Fa y.J | §
max T
Sg:‘in 7 or equivalently:
ge =
B / NA _{ g =Xtt2

v ¥ max v

(7
] T } Eo ::l”’_@-;—%gﬁ- 5980 = 7650 N/om>

Similarly, the thermal stress on the outer face of the aluminum skin is:

_.136 - .038 _ 2
fmin T 5980 = 4300 N/cm

This effect can be important in interpreting the strain measurements made in the
tests because the strain gages are mounted on the outer face of the aluminum gkin.
(See sketch),
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The external applied loads for Condition 1, end boost at ultimate load, arc:

N, = M/r rZ +py R/2= ~1522 N/em and
NY = pR - = 2580 :N/cm on the compression side
and |
N, = 3974 N/cm and .
Ny = 2580 N/cm on the tension side.

The load distribution and stresses in the face sheets are shown in Table 31 for
the above loads as determined using the expressions:

(f.t)=0.810 N_ +0.041 N
X X y
(f.1) =0.810 N_ +0.041 N
y Ty X

A discrepancy exists between these calculated stresses and those predicted in the
section on the calculation of test loads. In the analysis method for honeycomb shell
instability of Ref. 19, uniaxial rather than biaxial stress-strain relations are used.
That is, » and v equal zero. For that case, the equations for the aluminum face sheet
stresses in the model due to the distributed shell loads only reduce to:

(f 1) =0.806 N_
(f.t) =0.806 N
y y

Tor the biaxial case, these equations are:

(b = [o. 806 +0.041 Ny/N_X ] N,
(fyt) = [0.806 +0.041 NX/NY ]Ny
which, for the Condition 1 load ratio of Ny/NX =-1, 69, result in:
(E 1) =0.741 N |
(£ t) = 0.782 N

An error of approximately 8% is therefore involved in using uniaxial stress-

strain relations to determine the face sheet stresses, or equivalently, a 7% increase
in applied bending moment would be required to produce the desired stress level in
the aluminum face sheet, The analytical approach used in Ref, 19 is to use a "knock-
down'’ factor based on test data to correct predicted instability stresses based on a
gimplified theory. Since the knockdown factor and the theory cannot be separated
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from each other, the simplified theory is used to predict the shell instability stresses
and the biaxial stress-strain relations will be used to evaluate the tank tests,

The strains in the aluminum face can be determined from the above stresses
using the stress-strain relations:

_ 1
Gx —-""E'(fx - ny_)+a AT
1

ey"—E(fy— vfx) +a AT

In these expressions, the stresses are due to the combined effects of external applied
loads and stresses developed in cooling from the stress-free temperature. Since the
thermal stress and strain are constant over the shell surface, their effect can be
separated from the strains due to applied loads:

Gtt1= € + eT+aAT
where is the strain due to the external applied loads, €p = Q-v) fT/ E is the strain
due to thermal stresses, anda AT is the free thermal expansion. From previous
calculations for the aluminum face:

€T+ a AT =520 x 10-6 - 5050 x 1(]-6 = ~4530 x 10_6

The strains due to the external applied loads only and the total strains are also in-
cluded in Table 31.

In the tests, the mechanical and thermal strains will be measured separately.
First, the change in strain will be measured as the tank is filled with the cryogen and
the wall temperature cools to the temperature of the fluid. (Transient effects are in-
cluded in these measurements). The strain gages-will then be rebalanced to a zero
output, and the change in strain due to the application of the external loads will be a
gseparate measurement. This procedure should simplify the comparison of experi-
mental results with theory since temperature-induced strains which are constant
over the tank surface will be measured as separate guantities and the strains due to
external loads will have been obtained directly. It should also simplify the cali-
bration of the strain recording instrumentation.

d. INSTRUMENTATION. During the tests, instrumentation must be provided for the
measurement of the applied loads, pressure, temperature, overall cylinder deflec-
tions, and local biaxial strains over a temperature range of 789C to 367°K.

As part of the provision for data acquisition, strain gages and temperature
gsensors were applied to the external surface of the aluminum pressure shell during
the tank fabrication process. These were installed at the locations shown in Figure
21 using the procedure described in Appendix D. The gage selected for strain measure-
ment was the Micro-Measurements WK-13-250TM-350 encapsulated two-leg '"T"
rosette with a strain range of + 1.5% over a temperature range of 4%K to 560°K. The
gages are aligned with legs in the axial and hoop directions. Two of the total of eteven
rosettes per test article have a uniaxial gage oriented at 450 to the roseite axis,
added to form a three-leg rectangular rosette. The surface temperature transducer
selected was the Trans-Sonics Type 1371 precision resistance thermometer with an
accuracy of +0, 8% K over a range 209K to 367°K, Four of these are applied to each
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test article. M-Bond 600 epoxy adhesive was used to bond both the strain gages and
temperature sensors to the aluminum pressure shell, This adhesive has an elongation

capability of 1% at cryogenic temperatures and 3% at room and elevated temperatures.

Additional instrumentation tor load, pressure, and deflection measurements,
which should be provided at the test facility, is also indicated in Figure 21. If hy-
draulic jacks are used to apply loads, it is anticipated that calibrated 200 kN load-
cells will e used in series to monitor the actual loads applied instead of relying on
low-friction jacks and pressure measurements, The pressure, approximately 40
N/em?2 in the cryogenic fluids, would be monitored by near-ambient pneumatic gages
with long low-heat/leak tubes joined to the tankage. The large hoop and longitudinal
displacements are readily measured with differential transformers with critical ele-
ments shielded [rom the eryogenic environment.

4, Specimen Fabrication

Two cylindrical test sections and a set of common end closure assemblies were
manufactured at Structural Composites Industries (SCI). Each cylindrical test section
consisted of four chem-milled 2219 aluminum alloy panels joined by longitudinal welds
to form a cylinder which in turn was joined by girth welds to tapered 2219 alloy rings
at each end. After the application of strain gages and temperature sensors, the
metal shell was reinforced with a paper honeycomb core and a two layer woven fiber-
glass outer face. The transition rings provide an increased metal thickness in
order to reduce the stress level in the low strength weld which will join the 2219
alloy shell of the test sections to the 6061 aluminum alloy end closure assemblies.
Each of the non-representative end closure assemblies consisted of an end dome,
Y-ring, skirt, and attachment ring joined together by welding. These assemblies
were fabricated from 6061 aluminum alloy because of the unavailability of 2219
material to manufacture these parts. Drawings of the test section and end closure
assemblies are given in Appendix C. |

The tooling concepts and fabrication processes used in the manufacture of
the two full length test articles were verified by the prior construction of a full-
diameter, short-length prototype unit.

a. TOOLING A preliminary review of the entire process for fabrication of the full-
length test specimens was conducted to select specific processes which should be
verified during fabrication of a prototype test specimen. "Special attention was given
to a rubber-bladder concept which had been initially selected as the method for sup-
porting the cylindrical metal shell during application of the composite structure.
After careful examination of the possible effects each composite application pro-
cess might have on a metal shell supported by a non-rigid mandrel (e.g., sag, local
buckling /flattening, ovality, etc.) it was decided use of this mandrel concept was
too risky.

The rubber-bladder concept was replaced by a rigid-mandrel design which
consisted of a segmented, sponge-rubber coated, rigid glass fabric/epoxy cylinder,
supported and located with rounding rings, and capable of contracting to a smaller
diameter to allow insertion and removal of the test specimen during fabrication.
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Usefulness of this type of tool for the full length test specimen fabrication was
verified by the construction of a full-diameter, short-length prototype unit discussed
in the following paragraphs.

b. PROTOTYPE SPECIMEN A 61 cm long by 127 cm diameter 2219 aluminum
cylindrical shell was fabricated from four chem-milled flat panels which were ma-
chine tungsten-inert gas (T1G) -welded together (duplicating the full length metal
model specimen fabrication process). This full-diameter, short-length aluminum
shell was agsembled to the previously discussed mandrel support fixture, and the
resultant unit was used to fabricate a composite reinforced prototype specimen.

Several stages of the processing are depicted in Figure 22 through 26. Figure
22 ghows the 2219 aluminum cylinder assembled to the mandrel support fixture.
At this point in the processing, the impression of the honeycomb core was recorded
on vinyl film to allow for adjustments in adhesive pattern layout in the weld land
areas.

Based on the results of the core impression tests, the aluminum cylinder was
cleaned, primed and the FM 123-2 adhesive film applied to the surface as shown in
Figure 23. Also shown in Figure 23 is a portion of the strain gage/wire layout used
to evaluate wire encapsulation and radial versus axial exit of wires.

Figure 24 shows the honeycomb core applied to the test cylinder. Following
vacuum bagging and cure of the honeycomb/adhesive system, the prepreg outer skin
was applied over the honeycomb material and the unit was again vacuum bagged and
cured, At this stage the processing was complete and the test cylinder was removed
from the mandrel support fixture. The completed prototype test cylinder is shown
in Figure 25. A typical cross section of the prototype tank wall is shown in Figure
26. Close inspection of Figure 26 indicates the excellent adhesive fill in the weld
land areas (aluminum decreases in thickness from right to left in the photograph).

Examination of the prototype specimen and analysis of the process operations
used to fabricate the specimen allowed the following decisions to be made regarding
full scale test specimen fabrication:

e Delete the core impression test - the vinyl film acts as an adhesive for
paper honeycomb,

e Fully encapsulate all strain gage wires with adhesive and exit wires axially
along specimen - minimizes discontinuities and potential for electrical
"shorta™.

s Core sanding over weld lands is not required since the discontinuity is
negligible.

e A differential vacuum probe will be used (and monitored regularly) during
core curing to insure proper bonding.



¢c. FULL-LENGTH TANK MODEL Two 1/6-scale model composite reinforced
aluminum test cylinders (SCI Dwg. No. 126931 and 126932) and the top and bottom
end closure assemblies (SCI Dwg. No. 126930) were fabricated. See Appendix C,
Fig. 89 through 91. The final assembly, Fig. 92, was never made.

(1) Cylindrical Aluminum Test Section Each 2219 aluminum shell test section

- P/N 1269331, was fabricated from four .154 cm thick flat panels which were chem-

' milled to obtain the required . 076 cm thick membrane sections. The four panels

' were subsequently roll-formed and joined longitudinally by automatic TIG welding.
Radiobraphic inspection of the welds indicated some linear porosity, which was con-
sidered acceptable and two defects (zas holes) not acceptable according to the
specifications. These two defects were ground out and manually welded, re-X-rayed
and accepted. A completed cylindrical test section is shown in Figure 27.

Manual girth welding of the transition rings to the cylindrical test section
~ proved to be inadequate. The many variants which SCI's subcontractor tried were
' based on his succesaful results for SCI with smaller vessels. The unsuccessful
variants included:

a. Tack weld fixturing with TIG welding from the inside. Local buckling
occurred.

b. Tack weld fixturing with TIG welds from outside. Local buckles occurred
at repairs of regions of lack of fusion.

c. Internal copper chill and junction preheated to 360°K prior to TIG welding
from outside. Repair at regions of lack fusion caused local buckling.

d. External copper chill and juncture preheated to 360°K prior to internal
TIG welding. Locally concave welds occurred. Repair from inside or
outside caused local buckles. Figure 28 shows typical examples of the
buckles.

SCI changed welding gubcontractors to procure automated continuous
girth welds. The subcontractor elected to use internal copper chills. The transitien
rings were removed from each test cylinder. The weld zones of all components
were machined, as shown in Figure 29, which details the resulting geometry. The
welding fixture shown in Figure 30, consisted of a massive expandable "wagon wheel”
for internal support, fit-up, and weld bead control, plus two external locating rings.
Weld schedules were developed using ghort cylinders of 2219 aluminum sheet material
fixtured with the new tools on automatic TIG welding equipment. Visual and radio-
graphic inspection of the sample welds indicated clear, well penetrated, cosmetic-
ally good welds.,

The developed weld process was subsequently used to TIG fusion-butt weld
two transition rings to each of the two aluminurn test cylinder sections, Visual exam-
ination of each of the four welds indicated minor and very isolated elastic buckling
("*oil-canning™). One weld had a small area of mismatch which should have a
negligible effect on load transfer. Generally, the welds were cosmetic..lly good with
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only minor variations in bead width/height. Subsequent radiographic inspection of
the four welds revealed many indications. These consisted of: cracks, lack of
fusion, tailed porosity, chained porosity and isolated round porosity. Cylinder
S/N P1 exhibited approximately 20% more defects per weld than those observed in
cylinder S/N P2; it was decided to repair the better welds of cylinder S/N P2 first.

Cylinder S/N P2 - In preparation for repair welding the defects in the girth
welds of cylinder P2, the (internal) weld bead was ground flush with the mating
surfaces, Both welds on cylinder P2 were again radiographically inspected; results of
the inspection indicated only two defect areas remained (one per each weld). The
first defect area, in one girth weld (G2), consisted of two 0,102-cm diameter pores
approximately 0.6 cm apart; the second defect area, occurred in the other girth
weld (G1), of 2.0 cm chained porosity.

The defects in weld G2 of cylinder S/N P2 were ground out and repaired;

. examination of the repair indicated a crack. Similarly, repair of the chained por-
osity in weld G1 caused three cracks, Again, the defects were ground out and re-
paired; two new cracks appeared in weld G2 and one new crack appeared in weld G1,
This process was continued two more times until radiographic inspection indicated
clear welds, and the unit was subsequently accepted for use.

The membrane thickness profile for each of the four chem-milled aluminum
panels forming cylinder S/N P2 was obtained using Vidi gage equipment. Results
indicated the range in thickness was from 0.0714 to 0.084 ¢m with 90% of the area
measguring 0,076 cm thick,

After completion of the thickness measurements, cylinder S/N P2 was cleaned
with MEK and aged for 18 hours at 450°K to place the 2219 aluminum into the re-
quired T81 condition. Samples simulating both the longitudinal seam welds and the
girth welds accompanied the cylinder through the aging process. The weld samples
were subsequently machined and tested per Federal Test Method 151A, Configuration
F2, Results of the tensile tests are included as Table 32. Also included in Table
32 are preproduction tensile test results for transverse oriented longitudinal seam
welds.

Cylinder S/N P1 - The underbead on both girth welds of cylinder 5/N P! was
ground flush with the mating surfaces and the resultant weld bead subjected to radio-
graphic inspection. Results of the inspection indicated the dressing eliminated 809%
of the indications. Repair welding of the remaining defects in the girth welds of
S/N P1 was initiated, and cracks developed in a manner similar to that which occurred
in S/N P2. The task of grinding/repair welding and repair of subsequent cracking of
welds in S/N 2 caused considerable oil-canning in the weld region before radiographic
inspection indicated the welds were clear.

The type of oil-canning (buckles) which was experienced was similar to that
of Figure 28. In order to eliminate the oil-canning, cylinder 5/N P1 was placed
over an expansion tool and locally stretched approximately 0.3%. Because of the
geometric discontinuities located at the transition ring/cylinder juncture, the
expansion was not uniform and most of the buckles remained in the metal. A multi-
layer glass fabric shim was constructed to conform to the internal shape of the
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cylinder (refer to Figure 29) in the buckled area (weld zone) which allowed the ex-
pansion to be applied to a uniform manner. With the shim attached, the cylinder was
again locally expanded 0.6%. This time about 90% of the oil canning was elimin-
ated; the total permanent set in the area of the girth weld was approximately 0,1%
of the original weld diameter. Just prior to this operation, the subcontractor
inadvertantly dropped a tool on the thin membrane, making a cruciform shaped tear.
It was possible to push the surfaces to their original contour and weld the edges
because the tear surfaces, each about 8 cm long happened to be substantially

hoop and longitudinal. Existing tooling (with grooved weld chills in the required
girth and longitudinal directions) was used to make this repair and the dlstortlon

at this location was negligihle,

Since the welds in the thin membrane region degraded the strength of the 2219-
T87 thin memhrane, that region wasg patched externally with two layers of woven
fiberglass cloth about 16 cm in diameter, attached by bonding, during subsequent
application of composites.

After completion of the stretching process, cylinder P2 was cleaned with MEK
and aged for 18 hours at 450°K, to place the 2219 aluminum in the T81 condition.
The cylindrical aluminum test section, ready for application of the composite sand-
wich material, is shown in Figure 31.

(2) End-Closure Assemblies Fabrication details for the non-representative 6061
aluminum end-closure assemblies (P/N 1269330-1, 2) are contained in Appendix C.
No special problems were encountered during the fabrication or assembly of the
components. Several stages of end-closure fabrication are depicted in Figures 32
through 36. Figures 32 and 33 show the as-formed fop and bottom end domes re-
gpectively.

Figure 34 shows the extension/support ring subassembly ready for welding to
the "Y-ring". Internal and external views of the completed bottom end-closure
assembly are shown in Figures 35 and 36 respectively,

Welding the 6061 aluminum end-eclosures to the composite reinforced 2219
aluminum test cylinders was beyond the scope of this program, In order to demon-
strate feasibility of this operation, flat samples simulating the dissimilar alloy
joint were prepared and tested. The samples were fabricated from 0.25-inch thick
plates of 2219-T47 and 6061-T42 aluminum alloys, welded together, machined into
uniaxial specimens and the specimens tested to failure in tension.

Results of these tests were recorded in Table 33. Two types of weld beads
were evaluated: (1) weld bead "ag i8'", and @2) weld bead ground flush. Test results
are relatively consistant (independent of weld bead) and acceptable in value for this
application. It should be noted that all failures were in the parent 6061-T42 material,



(3) Cylindrical Sandwich Structure Fabrication of the honeycomb sandwich portion
of the cylindrical test section was, generally, accomplished according to SCI speci-
fications. Specific deviations from the specifications, and photographic coverage
of major processes, are described in the paragraphs that follow.

All composite process operations were performed on a full-length mandrel
support fixture fabricated according to the previously developed procedures. The
mandrel assembly, shown in Figure 37, consisted of a neoprene sponge-padded
glass-fabric/epoxy (split) cylinder supported by cam-centered rounding rings and
joined by a mefal tie-bar.

Because of the long time span required to fabricate the aluminum cylinders,
the Reliapreg R~1500/7851 facing material and the FM-123-2 adhesive (required
for the sandwich structure) had exceeded their respective shelf lives. In order
to verify the suitability of these materials for use in fabricating the sandwich portion
of the shell, the two materials were submitted to requalification testing. Results of
the tests were contained in Tables 34 through 36. Prior (as received) test values
are contained in the tables for reference. All values were within design limits and
the materials were accepted for use in fabrication.

Cylinder §/N P2 - Several stages in the processing of cylinder S/N P2 are
shown in Figures 38 through 43. Figure 38 shows the 2219 aluminum cylinder
agsembled to the mandrel support fixture. At this initial stage in the procesasing the
aluminum shell had been chemically cleaned with paste cleaner, rinsed with water,
and was awaiting the application of FM123B primer.

Figure 39 shows the local strips of FM-123-2 adhesive film, which were being
applied to each weld land (axially and circumferentially) of the primed cylinder.
Also shown in the figure are several of the strain gages which had been bonded to the
aluminum prior to adhesive film application. Figure 40 shows a typical biaxial
strain gage and one of the surface temperature transducers.

Adhesive film was then applied to the entire surface of the cylinder, windows
cut in the film to bare the gages, gage wires applied and encapsulated with adhesive
film, and the preassembled honeycomb core fitted to the adhesive lined cylinder.
The unit was then vacuumed bagged, cured, and locally, in the transition ring
reglon, filled with Corefil 615. Figure 41 shows the cylinder at this stage of the
process, :

The next operations consisted of: trimming (tapering) the core at each end;
application of the R~1500 prepreg skin material; vacuum bagging; and cure. At this
point in the process cylinder P2 was de-bagged and visually inspected. The inspec-
tion revealed several axially oriented wrinkles in the skin material which were
judged unacceptable. Removal of skin material in the wrinkle regions was initiated
80 that a standard "'step joint overlay' repair technique could be employed.

Figure 42 shows the cylinder at this stage of the process. Close inspection of the
photo indicates one of the skin wrinkles in addition to the partially completed re-
moval of another wrinkle,
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The "'patchwork quilt'' effect depicted in Figure 42 and the apparent ease of
skin material removal without damage to the core resulted in the decision to com-
pletely strip the skin material from the core and repeat the operation. The following
conclusion/recommendations resulted from an analysis of the skin material process
operation: :

e Skin material (prepreg) was not stretched tight enough during its
application.

o Normal resin flow caused additional relaxation during the initial cure
stage.

e Heat and mechanical work (teflon paddle) should be used locally as the
prepreg is applied.

e All wrinkles should be removed from the bag material during application
of the vacuum, '

All strain gages were checked and were functioning properly at this stage of
the processing, R-1500 prepreg was again applied to the cylinder using the recom-
mended changes in procedure. Visual inspection of the cylinder after cure indicated p
an excellent sandwich structure free of all skin wrinkles, The cylinder was then hogp
wrapped with 20-end S-Glass roving in the transition ring regions, cured, and re-eff__m__
moved from the mandrel assembly, Figure 43 shows the completed honeycomb
sandwich reinforced aluminum test cylinder.

The unit was subjected to final inspection; results of the dimensional inspec-
tion are shown in Figure 44. All strain gages and temperature sensors, shown
schematically in Figure 45 were given a final continuity check. Results, shown in
Figure 46, were disappointing; two-thirds of the gages had been lost during the
final processing operations. No explanation for the shorted gages were determined.

Cylinder S/N P1 - The same sequence of process operations discussed for
eylinder 8/N P2 was used to fabricate the sandwich portion of cylinder S/N P1;
modification of specific procedures developed during the fabrication of cylinder
S/N P2 were incorporated into the processing of cylinder /N P1. Only one new
problem was encountered during the fabrication of this unit.

The normal procedure used for each vacuum bagging operation required the
bundle of strain gage leads, which terminated at the end of the cylinder, to be in-.
dividually identified with tags, wrapped with vinyl film, and sealed with zinc chro-
mate putty. During the final bagging operation for cylinder S/N P1, the vinyl film
covering of the strain gage lead bundle was omitted and the zinc chromate was allowed
to be in direct contact with the lead wire bundle. Inspection of the lead wire bundle
after cure and debagging of the unit indicated the zinc chromate had softened, flowed
between wires and identification tags, and completely obliterated the identification
of individual strain gage leads. This created the problem of (1) establishing which
two wires, from the entire bundle, lead to specific gage; (2) where that specific gage
was located on the part and (3) whether that gage was oriented axially or circum-
ferentially.
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Resistance checks of all lead combinations established the number of
functional gages and their corresponding parts of lead wires. Local heating (heat
gun) of the cylinder inaide surface was used to establish the location of each
functional gage on the unit. Whether the gage was oriented axially or circumferen-
tially could not be established. Gage direction will be evident upon internal pres-
surization or axial loading of the unit, Figure 47 contains the information obtained
during this operation; locations of gages by number are shown on Figure 45.

Figure 48 indicates the values of selected final dimensions for cylinder S/N
P1. Comparison of these values to those obtained for cylinder S5/M P2 (Figure 44)
indicates the amount of local transition ring permanent set experienced by cylinder
S/N P1 during expansion to relieve buckles..

d. FINAL INSPECTION The vessels sent to Lewis Lab by SCI were unpacked and
inspected, On the basis of visual inspection, the NASA program manager and the

" Grumman project engineer consider the quality of all the girth welds to the transition
region of questionable reliability because of substantial numbers of regions of
apparent lack of complete penetration. PSM, a Fansteel subsidiary, has certified

to SCI that these welds passed Grumman's rigid specifications. Subsequent rein-
spection of the X-rays by Grumman QC personnel confirms the visual observation
that these welds are barely within specification.

(1) S/N Pi: There were a few additional surprises. There seemed to be an unwelded
plug on S/N P1, about 1/4" diameter of aluminum alloy, near the reported and
repaired tear in the thin shell. (Subsequent X-ray inspection did not reveal any

weld or lack of fusion at this location.) Neither PSM or SCi has any recollection

of this flaw. The inside of this vessel is discolored. SCI states that this occurred
when the paste cleaner used to prepare the outer surface for bonding of composite
was unwittingly applied to the inner surface and not removed. The resulting scale
was not removable without damage to the shell and was therefore not removed.

The round-up mandrel was apparently not strong enough to maintain the
designed cylindrical shape of the vessel during the curing of the glass cloth overwrap.
Hence "flats'' are distributed over the surface of the vessel. In addition, the curing
vessel seems to have rested on a meridian during cure. As a result, there are a
series of shallow ,06' depressions about 1/4" wide and 1" long along this meridian.

(2) S/N P2: This vessel is somewhat rounder than S/N P1 but there is a region
about one square foot at one end which is rather deeply (about 1'') buckled. The
fiberglass is blackened in this area and the core is not visible through it. SCI states
that the darkened area is corefill.

(3) Suggestions on Testing The vessels cannot be tested in the projected manner
without reinforcing the areas noted in the section Final Inspection above. These
can be reinforced without interfering with the principal test region.

The girth welds on both vessels should be reinforced axially with strong stiff
fibers bonded to the inner surface,
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The vessels should be rounded by internal pressurization with end plates
closing off the vessel. The end plates should be supported by a central strut.

If pressurization removes the buckles the ends should be welded on and the
vessels tested as planned,

For 8/N P, the buckle will probably not be removed by pressurization. Since
the expected loading is by an axial force and moment and importantly, no shear, the
buckle can be tolerated if located at the neutral axis during test.

Alternatively, this region can be removed from significant testing by internally

encapsulating the 1 1/2 feet from the end of the vessel containing the buckle, prior
to welding of the end closures to the cylinder.
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DISCUSSION OF RESULTS

The design effort has led to two interesting options using composites to reduce
cost on the Shuttle hydrogen drop tank. This tank must sustain high axial compres-
sive loads due to longitudinal bending. For the baseline tank, integral aluminum
stiffeners and rings are contemplated. The bonded stiffener concept avoids the com-
plex machining and forming operations required to produce a similar-appearing
structure. One major advantage of this system is that, because it has the appearance
of the baseline design, it is more readily acceptable. Misgivings about peeling of
the bond are circumvented by using mechanical hold-down attachments at the ends
and also distributed along the length to act as debond arrestors.

A gtill-lower cost option avoids local stiffeners by means of a thin monocoque
aluminum shell stabilized with external epoxy-inpregnated paper honeycomb covered
with glass epoxy composite cloth. The fit-up problem, difficult with concentric
metallic shells joined by a honeycomb, is readily solved with laid-up cloth. There
is an acceptance problem with this configuration because of NASA's unfavorable ex-
perience with some large honeycomb vessels. Moderately large subscale vessels
had worked well but expensive full-scale ones were made with inadequate quality as-
surance. The resulting premature failures have led to skepticism about scaling to
full size; only a successful full-scale demonstration model can dispel this skepticism.

There is a second consideration with honeycomb which we termed "cryobomb-
ing". One can postulate that air would condense in the cells of the honeycomb when
the vessel is filled with liguid hydrogen. On emptying, or the accompanying rise
in wall temperature due to an abort, the liquid air could gagify quickly. Pressures
within the cells, high enough to rip off the glass cloth, could be generated. One ob-
jective of the proposed test program is to determine if this possibility can be realized.

Even if the tests show a high degree of probability of 'cryoboming", the pro-
posed honeycomb design is viable. A perforated honeycomb and a frequently-per-
forated glass cover can be fabricated inside the aluminum vessel to stahilize it. Cryo-
bombing could thus be avoided at a moderate cost. Although the same idea might
seem practical on the outside, the foam insulation normally applied would inhibit
external perforations from working properly.

From a fabrication viewpoint, the program has shown the need for adequate
welding and wrapping tooling, to protect the unstahilized tank structure.

Although the tooling used on this program was not adequate to maintain the
desired roundness or straightness of the cylinder, the tooling for full-scale need not
be complex. The difficulties experienced were related to the need for atypical
end-connections, required for testing of the model. At the ends of the full-scale
cylinders, similar local problems would be solved taking advantage of the experience
gained during this development effort. Simpler tooling can be assured if the ves-
gel's internal diameter is held constant while the thickness of the metallic end rigs
increase. Inthose regions, automated welding on well-fitted parts, use of a sub-
stantiated weld schedule designed to minimize required weld repairs, and the use of



an expanding ring to eliminate shrinkage buckles due to weld repairs, will assure
cylinder roundness. In the full-scale fabrication, it would be impractical to rest
the vessel on Its side before the external glass cloth was bonded to the honeycomb
core and cured. This apparently happened to one of the subscale models during its
curing operation.

On this basis, the projected ease of fabrication can be justified.
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CONCLUSIONS

The use of composites was siudied as a means of cost saving on the Space
Shuttle Orbiter disposable tankage. It was concluded that the weight saving due to con-
strictive overwrap on the monocoque LOX tank was not cost-effective. For the LHo
tank, the increased weight over the integrally- stiffened tank baseline was justified by
substantial fabrication cost-savings resulting from the use of the composites. Two
attractive options were established: 1) a sandwich of glass-cloth outer face, paper
honeycomb core, and 2219 aluminum alloy inner shell, and 2) a stiffened shell with
bonded and mechanically attached stiffeners and ring frames.

53



S

756.92 cm DIA.

40,6 m

N
’
AP
/ -
) A |

Fig. 1 Series Ballistic Recoverable Configuration External Tanks




W STATIONS ANALYZED

LO, TANK: L. TANK:
= 3 M
I;%“AESVF"UL;;; 3\;6'75'3640"21577 kg ' TANK VOL. = 510.01 METER?
USABLE FUEL WT: GROSS FUEL WT. = 73305 KILOGRAM
"ULLAGE = +3% ON FUEL VOL. USABLE FUEL WT.:
‘ ULLAGE +3% ON FUEL VOL.
= 3
LO, DENSITY = 1135.71 kefm’s LH, DENSITY 70481 kgim’s
1280 1550 ‘
1963.42 3080 4065
142841 2285.52 V¥ 429260 455030
| P - A
106299 | 1%50 o5 jess.82 l | AFT INTERSTAGE %
' FwD INTERSTAGE | QRE-8TA. 331216
Leg—— 584.20 ORB. 5TA.1463.04 TS 384:5 » ' .
1069.82 ORB. W.L. 998.22 3. : - 816 36—
\ {T.S. 1995.18 — ]
508.00 82296

A

30‘2.26R

: TN
-~ l | | 756.92 JF\
N 0 295?151!;« ) | ) t I

\ —
I
|
1
- e 1230 595,93 " 2037.08 ——
314.96 236.86 375 .02 ottt —p [--25.40 266.70
{REF) 302.77 ‘
266.70 :
e—————1140.46 (REF) | le— A A
- 257048 (REF) -
A 3
- 4051.30 .
. 4600.96 >

NOTE: ALL DIMENSIONS ARE FOR WET SURFACES
STATIONS AND LINEAR DIMENSIONS ARE IN CENTIMETERS

Fig. 2 HO Tank Geometry 040A Vehicle



ULTIMATE AXIAL COMPRESSIVE LOAD, N/cm

15000

:

AFT INTERSTAGE SUPPORT ~a

TANK STATION, cm

Fig. 3 LH, Tank Ultimate Load Intensity at End Boost

5000

>
37sl.sn LH, TANK
L- 267 it 2037 > -.%267->I
STA. 4065
STA. 3050
I |
| !
L L l 1 l 1 I I
2000 3000 4000



LS

CONCEPT A — INTEGRALLY STIFFENED OVER-

WRAPPED TANK — {LH;)

TANK WALL (AL) PAD OR $-GLASS

'

=77

il

VIEW LOOKING FWD

CONCEPT C — SANDWICH CONSTRUCTION TANK
{LH;)

GLASS FABRIC CORE

/

TANK WALL {AL)

VIEW LOOKING FWD

CONCEPT B — BONDED STIFFENERS OVER-
WRAPPED TANK (LH,}

TANK WALL (AL)

\ PRD OR S5-GLASS

+
+

e mw?
-

+ o+

Pp—

BONDED- ZEE (ALl

VIEW LODKING FWD

CONCEPT D — UNSTIFFENED OVERWRAPPED
TANK (LO,}

PRD OR 5-GLASS

TANK WALL {AL}

VIEW LOOKING FWD

Fig. 4 Design Concepts



I

&k

LH, TANK STATION 4065
N = -14040 N/cm \
CONCEPT 8 BASELINE’
(ZEE)
5l
P
‘CONCEPT A) CONCEPT B
E INTEGRAL
© *BASELINE' CONCEPT A
fe=
% af
=
w
o
X
'—
-
Z LH,, TANK STATION 3050
= = —6130 Njem
2 3
5
w
)
V1]
=
<
O
A
Tog+ STIFFNER

2k b

Ak

0 1 ] ) 1 ]

o 1 2 3 a4

SKIN THICKNESS, t,, cm

Fig. 5 Results of Compression Optimization Programs

58



66

EQUIVALENT ALUMINUM THICKNESS, t, cm

LIMIT LINER HOOP $TRESS, Nicm®

Fig. 6 LO. Tank, S-Glass Overwrap at T = 260°C, Cond. 1

0
60 -
51700 N/em? OVERWRAP PRESTRESS TANK STATION 1650
L
[17]
[
B0 = E
[7s]
a
o
@]
I
o
w
Z
/ =
w
40 |- m
41400 TANK STATION 1240 5
) [&]
51700 Nfcm? OVERWRAP PRESTRESS
30
CUTOFF, COMBINED STRESSES
20 l | ] ]
20000 25000 30000 35000



[=}]
<

EQUIVALENT ALUMINUM THICKNESS, t,cm

.80

.70

60

.30

27600 N/cm® OVERWRAP PRESTRESS

24200

27600 N/cm® OVERWRAP PRESTRESS

TANK STATION 1550

TANK STATION 1240

CUTOFF, COMBINED STRESSES

20000

25000 300060
LIMIT LINER HOOP STRESS, N/cm?

Fig. 7 LO, Tank, PRD Overwrap at T = 260°C, Cond. 1

CUTOFF, LINER HOOP STRESS



19

1.0

f/Fey

—

PLATE (GAC)
—

—
————

—— —
- - CYLINDER {GERARD)
—
-
-— — -
- - - — — -
- - e —— —— WIDE COLUMN (GAC)
—
— -
A
”~
P -
PR ] e
foR [ E Et
n=——=|—r 3 GERARD — CYLINDER
TCHE| 1-v E
1 1 ]
1.0 1.5 20
fcrel IFoy

Fig. 8 2219 Aluminum Alloy Plastic Buckling Curves



Y

b 2193 CM

/ 2376 M \

686 CM

X

ENVELOPE OF
FULL DEVELOPED
"CONE

ENVELOPE OF—.‘,—

OF FULL DEVELOPED
CONE

Fig. 9 Developed Cone Surface of Orbiter Lox Tank

on
ra



il
||

-

L ] I

Y I:. 15 O.C. MIN SPAC!NG-_.u.{

NOTE: ALL DIMENSIONS IN CENTIMETERS.

Fig. 10 Alternative Machining Methods for Orbiter LH, Tank

63



79

Fig. 11 Longitudinally Machined Flat Plate for Orbiter LH, Tank



Fig. 12 Plates Rolled and Longitudinally Welded for Orbiter LH, Tank
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CLOTH BONDED TO
INNER VESSEL

ROLLED SHEETS, CHEM-MILLED &
BUTT WELDED

Fig. 17 Sandwich Construction, Method #1, Orbiter LH; Tank
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ALUMINUM

SHEET :
BUTT WELD
HONEYCOMB ] ~
CORE :
TWO GLASS

CLOTH INSERTS

TWO GLASS CLOTH 1
FACE SHEETS [

TWO GLASS CLOTH
CORE FILLER SPLICE SHEETS

ROLLED SHEET, CHEM-MILLED & HONEYCOMB CORE
& FACE SHEET BONDED

BUTT WELDED
TO SEGMENT

Fig. 18 Sandwich Construction, Method #2, Orbiter LH; Tank

TWO GLASS CLOTH
TWO GLASS CLOTH
FACE SHEETS SPLICE SHEETS

ALUMINUM
"SHEET

CORE FILLER

BUTT WELD
TWO GLASS

HONEYCOMB CLOTH INSERTS
CORE

SHEET ROLLED IN "

THE LONGITUDINAL WELD JOINING ONEYCOMB CORE &
SEGMENTS FACE SHEET BONDED

DIRECTION, CHEM-MILLED AR

Fig. 19 Sandwich Construction, Method #3, Orbiter LH; Tank
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Fig. 20 Failure Criteria
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L — LOAD
D = AXIAL DISPLACEMENT
P — PRESSURE

w
L APPLIED L
BENDING
MOMENT
COADING
' D _FIXTURe P
W = WELD LAND = ’
w [ = BIAXIAL STRAIN GAGE T TR T T~
MID SECTION B-B A = UNIAXIAL 5.G. @ 45° // ~. £
O = TEMPERATURE SENSOR s \ 3
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3
EPOXY-GLASSCLOTH e SigTan 4
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T
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~—~— — - END DOME

a) Strain Gage and Temperature Transducer Designation and Location

Fig. 21 Schematic of Test

SUPPORT

Article

.
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PC-2

e VENT
L1 L2
BURST '
DISC ‘
/—-' "-..\
// N\
LG-3
A
SYMBOL MEASUREMENT
PC-1,2 PRESSURE
L1,2 FORCES
LG1,2 LONGITUDINAL TEST SPECIMEN
DEFLECTION
LG34 HOOP DEFLECTION
LG LG-2
LG4
PC-1
SOURCE »—(}— A
% = X
CRe 7 ¥ 7 777777
DRAIN ~—De—

b} Test-Site Instrumentation Designation and Location

Fig. 21 Schematic of Test Article {Cont'd}
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Fig. 22 Prototype Shell of 2219 Aluminum Assembled to
Mandrel Support Fixture

Fig. 23 Adhesive Layer Showing Strain Gage Wire Location on Prototype
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Fig. 24 Honeycomb Core Applied to Prototype Test Cylinder

Fig. 25 Completed Prototype Test Cylinder



Fig. 26 Cross Section of Wall from Completed Prototype Test Cylinder

Fig. 27 Full-Size Cylindrical Test Section, Metal Shell
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A) CIRCLED AREAS SHOW APPROXIMATE SIZE OF LOCAL BUCKLES.

B) DETAIL OF BUCKLED REGION.

Fig. 28 Typical Full-Scale 2219 Aluminum Test Cylinder-to-Transition
Ring Weld Region



6L

CYLINDER

WELD LAND LENGTH, Lg:

WELD-FLAT LENGTH, L1

WAS: 0.60

518”1
WELD SURFACE

.200

Le
| r 062 + .002 210

WAS: 1.00
IS: 5/8+1/18
.033 .050
.028 045
-2 DETAIL

REF: P/N 1269331

2219 ALUMINUM SHELL—
TANK TEST SECTION

ez === sneassssd ESESRTEETELITTIEIITITTETITII T2 +

LT !f ‘ 350 ;Jt

-3 DETAIL
49.940
I.D.

49.852
1.D.
WELD

SURFACE

NOTE: DIMENSIONS ON THIS SHOP DRAWING ARE IN INCHES,

Fig. 29 Transition Ring, Weld Details
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Fig. 30 Girth Weld Tooling

Fig. 31 Tank Test Section, 2219 Aluminum Shell, P/N 1269331



inum Head

32 Top End Closure Assembly 6061 Alum

Fig

inum Head

33 Bottom End Closure Assembly 6061 Alum

Fig.

6061 Alum

ing Subassembly,

ion/Support R

Fig. 34 Extens
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Fig. 35 Internal View of End Closure Assembly

Fig. 36 External View of End Closure Assembly



Fig. 37 Completed Full-Scale Mandrel Support Fixture

Fig. 38 Aluminum Shell Assembled to Mandrel Support Fixture

83



84

Fig. 39 Adhesive-Filled Weld Lands

Fig. 40 Bonded Biaxial Strain Gage & Temperature Transducer



Fig. 41 Honeycomb Core Applied to
Test Cylinder

Fig. 42 Repair of Skin Wrinkles

Fig. 43 Completed Composite-Reinforced
Aluminum Test Cylinder, P/N 1269332-1
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- .75L _ -
- 5L >~
3 5L - HOOP WRAP
ey, s ep—
t 1 Y 4 4 1
D D
1 Cz Dca
PHB gy Da
Dy
A
¥ ¥ Y  §
Y y
Lg = e — — LA
et LHg [ Lya | ~—
- L >

ENDB/” h\\ENDA

DIAMETERS (IN.) LENGTHS (IN) CYLINDER WEIGHT = 116.5 LBS

Dg  50.296" Lg 175"
Da  50.292” La 1.758"
Dyg 50.784" Lyg 7.75"
Oya 50.765" Lya 77
Dgq  50.6565" L 86%"
Dgg 506577

De3 50.678"

Fig. 44 Shop Dimensional Inspection Record, Ser No. P-2°
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L8

bet——— 32,7 ——] f——— 32,7 ——]
—19.7 Iy —19.7 -3 DETAIL
END A i 6.6 [ —+]66 fa > 66 e
| }
12.0
{ NO)
®
43.0
-2 DETAIL
_@—L@_L@_ —l.{® _K@L@_ I@ 86.0
| I | l |
)
1 © L ©
1 ! -3DETAIL
12.0
¥ Y
ENE{ e——39.3 - 30.3 . 39.3 >
SEAM 1 SEAM 2 SEAM 3 SEAM 4 SEAM 1
- 167.2 >

NOTES:

1. ALL DIMENSIONS IN INCHES

2. DRAWING NOT TO SCALE

3. KEY:

L elAXIAL STRAIN GAGE
L2 ROSETTE STRAIN GAGE
® TEMPERATURE SENSOR

@ GAGE NUMBER

Strain Gage and Temperature Transducer Besignation and Location, Ser No. P-1
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GAUGE DESIGNATION CONDITION
(L= LONGITUDINAL H = HOOQP)
1L SHORTED
1H SHORTED
2L SHORTED
2H SHORTED
3L SHORTED
3H SHORTED
4L SHORTED
4H SHORTED
SL oK @ 194°K
5H SHORTED
8L SHORTED
&H SHORTED
7L OK @ 194°K
TH SHORTED
8L SHORTED
8H SHORTED '
aL OK @ 184°K
aH SHORTED
10L OK @ 194°K
10H SHORTED
1L SHORTED
14H OK @ 194°K
TEMP SENSOR 2. SHORTED
TEMP SENSOR 6 OK @ 304°K
TEMP SENSOR 8 OK @304 K
TEMP SENSOR 10 OK @ 308°K
4. 45° SHORTED
5-45° 0K @194°K

Fig. 46 Strain Gage and Temperature
Transducer Condition, Ser No. P-2

GAUGE DESIGNATION CONDITION
(L = LONGITUDINAL H = HOOP}
L OPEN
1H OPEN
2L i ONE GAUGE OPEN
2H
3L % ONE GAUGE ONLY
aH
Al % ONE GAUGE ONLY
aH
5L TWO GAUGES OK
5H % * ONE GAUGE OPEN
6L ONE GAUGE OPEN
gH % ONE GAUGE OPEN
7 oK
H oK’
8L QPEN
8H OPEN
oL % ONE GAUGE OPEN
gH

10L oK

10H oK

1L oK

1H oK

TEMP SENSOR 2 oK

TEMP SENSOR 6 oK

TEMP SENSOR 8 oK

TEMP SENSOR 10 oK

4.45° OPEN

5- 456° .

Fig. 47 Strain Gage and Temperature
Transducer Condition, Ser No. P-1




st 75L -
-t 5L -
HOOP WRAP
-t 261 -
WIRIN\G
= a 'y
) 4 \ T l A A 4 A
Dc D D
1 Co2 o
D Da
HB Dg ‘
DHA
 ; Y |
y— _u_ ¥
Lg —» |— . -l
- L 3
END B~ END A
DIAMETERS {IN.) LENGTHS {IN} CYLINDER WEIGHT = 107.5 LBS
Dg 50.420" Lg 1.5
Dp  50.558" La 157
DHB 50.843" LHg 7.687"
Dpa 51.0117 LHa 7.6877
Dgy 50.656" L 865
Do 50.674"
Dc3 50.672"

Fig. 48 Shop Dimensional Inspection Record, Ser. No. P-1
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Table 1 Loading Conditions — LH; Tank

A) CONDITION 1 — END OF FIRST STAGE BOOST (TANK FULL)

4=

i
Ne =5RUEP
P
Nym = Ne ¥
Ny p= PN+

UPPER SURFACE OF TANK

R = 378.46 cm STA 3050 STA 4065

P, TANK AXIAL LOAD, LIMIT, (N] —13.3 x 10" —16.7 x 10¢

M, TANK BENDING MOMENT, LIMIT, (emn) 700 x10° 2620 x 10

NE, DISTRIBUTED FLIGHT LOAD, LIMIT, (Nfcm) —~7180 —12930

P, TANK PRESSURE, LIMIT, {Nfcm®} 26.9 MAX 29.2 MAX

(INCL HYDROSTATIC)

Pgys, SYSTEM PRESSURE, (Nfem?®) 24 .8 MAX 24 .8 MAX
20.7 MIN 20.7 MIN

Psvs R/2, (N/cen) 3920 3920

NLm. NET AXIAL LOAD, LIMIT, {M/cm} —3260 —-8910

NyLT. NET AXIAL LOAD, ULTIMATE, {N/cm) ~6130 —14040

TANK WALL TEMPERATURE ("k} K} 204 204

B) CONDITION 2 — POST ORBIT {NSERTION {TANK EMPTY)

Pgyg SYSTEM PRESSURE, (NEWTON/cm?®)

TANK WALL TEMPERATURE (° K}
C} CONDITION 3 — CURE

RIGID MANDREL, ZERO STRESS IN LINER

TANK WALL TEMPERATURE {°K)

) CONDITION 4 — POST-CURE
NET PRESSURE IS ZERD
TANK WALL TEMPERATURE (° K)

90

24.8 MAX




Table 2 Loading Conditions, LO; Tank

A) CONDITION 1 — END OF FIRST STAGE BOOST (TANK FULL)

STA 1240 STA 1550

R = 336,80 cm R = 378.46 cm
P, TANK PRESSURE, LIMIT, {N/em®) | 37.4 MAX 48.3 MAX
(INCL HYDROSTATIC) ‘
Pgys: SYSTEM PRESSURE, (Nfem?) | 26.2 MAX 26.2 MAX
TANK WALL TEMPERATURE (°K) 88.6 BB.6

B} CONDITION 2 —POST ORBIT INSERTION (TANK EMPTY)
Pgyg- SYSTEM PRESSURE, (Nfem?) 17.2 MAX
TANK WALL TEMPERATURE {°K} 533 :

C} CONDITION 3 — CURE

RIGID MANDREL, ZERO STRESS IN LINER

TANK WALL TEMPERATURE {°K} 367
DICONDITION 4 — POST-CURE

NET PRESSURE IS ZERO
TANK WALL TEMPERATURE {°K) 367
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Table 3. Typical Properties of 2219 Aluminum for Use in Parametric Study

SPECH- .
MEN 2219 -- T62 2219 - T87
DIREC:
TION 450°K 260°K 77°K 20°K 450°K 260°K 77K 20°K
PROPQRTIONAL LIMIT, kN/ecm?
TENSION L 181 36.8 34.4 358 217 35.8 426 46.9
T 186 378 33.7 36.5 21.7 365 43.4 46.1
COMPRESSION L 18.1 36.8 34.4 35.8 217 35.8 42.6 469
T 18.6 375 33.7 368 21.7 36.5 43.4 46.1
YIELD STRENGTH, kN/em?
TENSION L 20.1 296 386 40.0 24.1 40.0 475 524
T 20.6 306 378 40.6 241 40.6 481 51.6
COMPRESSION L 20.1 29.6 38.6 40.0 24.1 400 475 52.4
T 20.6 30.6 37.8 40.6 24.1 40.6 481 51.6
TENSILE STRENGTH, kN/em?
TENSION L 28.2 406 53.8 634 296 475 57.9 68.9
T 31.0 434 54.4 63.4 289 46.7 58.1 67.5
ELONGATION, % IN 5.1 ecm
TENSION L 105 12 14 10 12 13
T 10 145 14 10 12 14
MODULWUS OF ELASTICITY, MN/cm?
TENSION L 6.7 7.1 7.9 8.0 6.7 7.4 69 8.0
T 6.7 71 7.7 8.3 6.7 7 7.7 8.3
COMPRESSION L 6.7 7.1 7.9 8.0 6.7 71 79 8.0
T 6.7 7.1 7.7 8.3 6.7 7.1 7.7 8.3
WELD JOINT PROPERTIES
HEAT TREATED AFTER WELDING AS-WELDED
JOINT EFFICIENCY, % L 114 96 876 73 (] 63
T 1035 a8 8756 76 69 69
ELOMGATION, % {N 5.1 cm L 9.0 7.0 4.0 4 45 25
POISSON'S RATIO : 0.325 0.335 0.335 0.325 0.335 0.335




Table 4 2219 Aluminum Characterization Analysis

PROPERTY 2219 — T62 2219 — 187
SPECIFIC GRAVITY 2.83 2.83
COEFFICIENT OF THERMAL EXPANSION,
RCM/CMK

78°K TO 297°K 17.3 17.3
293°K TO 374°K 22.4 22.4
297°K TO 450°K 225 225

POISSON'S RATIO 0.325 0.326

Table 5 Uniaxial Filament-Wound Composite Material Properties for use in
Parametric Study of Filament Overwrapped Tanks

COMPOSITE SYSTEM
PROPERTY 5901 GLASS/EFOXY PRD-A9-TI/EFOXY
FILAMENT
ULTIMATE STRENGTH, kN/gm? 459.0 268.0
ELASTIC MODULUS, MN/cm? 8.55 128
SPECIFIC GRAVITY 2.4 14
COMPOSITE
FILAMENT FRACTION IN COMPOSITE, VOL % 67 G5
SPECIFIC GRAVITY 2.0 14
LONGITUDINAL MODULUS, MN/cm?
450° K 5.7 7.3
297°K 5.7 8.4
78°K 6.3 96
LONGITUDINAL TENSILE ULTIMATE STRENGTH, kN/cm?
450: K 120.0 99.1{3}
297°K 152.0 124.0
78"K 190.0 124.0
LONGITUDINAL TENSILE OPERATING STRESS, lN/cms
450°K 71.6 66.1{1)
297°K 91.0 82.6(1)
78°K 113.7 82.601}
COEFFICIENT OF THERMAL EXPANSION, wemfem® K
78°K to 207°K 2.9 ~3.59
297° K to 450°K 25 ~5.,55

MNOTES:
{1} ASSUMED VALUE BASED ON 15 SAFETY FACTOR.

{2) ALL OPERATING STRESSES ARE BASED ON ZERO-STRESS TO FULL-OPERATING-STRESS CYCLIC

LOADING, WHICH |5 CONSERVATIVE.
31 ESTIMATED VALUE.
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Table 6. Mechanical Properties of Materials Used in Concept C (Honeycomb) Analysis

I. 1581 Fiberglass Cloth Laminate (37.6% Resin, t = .026 -cm/layer}

94

PARALLEL / TENSILE COMPRESSIVE TENSILE
NORMAL STRENGTH STRENGTH MODULUS
YEMPERATUHE Nfem? Nfemn? N/cm?
295°K 6380058500 43100 20800 2.27x10,/5 19,108
20°K 9500054300 75200,%59000 2.94x10°/5 gy 10
ASSUME 92% OF RT PROPERTIES AT 94°C
11 Honeycomb Core — RT Properties
, STRENGTH MODULUS
BASIS Fc FsL Fsw Ec GeL Gcw
. N/ecm? N/cm? Nfem? N/cm? Nfem* N/em?
ALUMINUM
1/4-2024-,0015-2.8 MInN 145 134 69 2900 19300 9600
FIBERGLASS (1)
HRH327-3/8-2.5 TYP 131 114 31 13100 8970 4140
PAPER(2}
HNC-3/8-60120)E-2.0 TYP 96 48 26 22800 6210 2760
{1) GLASS {2) PAPER
113xRAT@ 20°K 118xRT@ 20°K
99 x AT @ 367°K 32x RT @ 367°K
ASSUME, MIN = .80 x TYP
1 Adhesives
TYPE TEST CONDITION RESULT
RELIABOND FLATWISE TENSION RT . 18.9 Njom?
3931 355°K 16.0
218°K 16.0
SANDWICH PEEL RT 4.5 cm Nfcm
3BE°K 34
18°K 2.2
FM123-2 FLATWISE TENSION RT ' 16.0 N/cm?
365° K 7.4
HEK 20.0
SANDWICH PEEL RT 5.3 cm Njcm
355°K 5.2
218°K 5.5

REF MIL-A-25463




Table 7 — Concept A (Integra! Stiffening), Results of Compression Optimization Program

AXIAL COMPRESSIVE STRESS
LH, SKIN STIFFENER | STIFFENER | STIFFENER (3} SKIN AT ULTIMATE LOAD, COND-1_| 4\t owaBLE
TANK THICKNESS | SPACING WIDTH DEPTH BUCKLING | SKIN EDGE | PANEL HOOP STRESS!4!
STATION STRESS STRESS FAIL.STRESS
cm tg, em b, cm tgq. cm d,cm tg.em | fer. kN/em? fa, kN/cm? fair. kNfem? fhoop - kN/em?
3050 343 (1) 18.1 335 444 426 121 183 156 -
318 21.2 .343 4.60 391 7.7 19.2 15.7 318
.300 185 348 4.44 381 9.3 19.8 16.2 314
.254 20.8 391 465 340 6.1 24.2 181 31.0
.208 (2) 22.1 442 4.80 305 43 31.2 201 223
.163 17.8 470 4,75 287 4.3 327 22,5 18.0
122 19.7 51 5.18 267 21 360 25.0 144
4065 444 (1) 18.3 480 5.15 581 206 272 243 -
394 171 495 5.15 544 20.5 304 259 210
.343 16.4 534 5.18 510 181 339 27.7 168
.292 (2} 16.9 582 5.44 ABO 14,5 76 79.4 18
242 17.6 650 5.94 459 9.7 396 305 9.0
.198 15.9 660 6.02 447 8.1 402 315 as
NOTES: (1) “BASELINE", ALL-ALUMINUM
{2} OVERWRAPPED DESIGN
{31 “SMEARED" THICKNESS, SKIN + STIFFENER (NO WRAP)
(4) COMBINED STRESS CRITERIA, COND, 1, AXIAL COMPRESSION + PRESSURIZATION
i
T, Vi T ya 77777
t L \
T t!,\, Tt —md et 3
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Table 8 — Concept B (2-Stiffening), Results of Compression Optimization Program

AXIAL COMPRESSIVE STRESS
LH, SKIN STIFFNER STIFFENER | (3} SKIN AT ULTIMATE LOAD ALLOWABLE
Qzﬁou THICKNESS | SPACING AREA 2#’.5'5‘..%3'“‘3 oon tooe | PaneL AL O s (4)
STRESS FAIL STRESS
cm tj, cm b, cm Agy. om? tgem for. kN/em? | fg, kN/em® €211, KN/cm? fhoop kN/cm?
3050 a31 (1) 15.4 1.58 432 14.1 186 166 -
307 16.2 157 404 10 22.1 17.4 29.1
279 19.5 165 363 7.2 24.4 194 7.3
22812 195 1.57 310 5.3 321 19.4 19.3
178 196 2.1 284 a7 337 219 178
4065 482 194 2.84 627 20.2 338 27.7 -
a7 ) 16.0 2.25 589 24.0 26.4 248 -
432 19.3 2.59 566 171 31.3 26.7 20.1
.ag1 19.3 2.84 529 145 357 26.9 14.4
3432 16.8 296 521 14.7 35.1 27.1 15.2
305 20.6 4.50 523 99 354 27.0 148
NOTES: (1) “BASELINE”, ALL-ALUMINUM
{2l OVERWRAPPED DESIGN
{3} “SMEARED" THICKNESS, SKIN + STIFFENER (NO WRAP)

4)

COMBINED STRESS CRITERIA, COND. 1, AXIAL COMPRESSION + PRESSURIZATION
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Table 9. LH, Tank Concepts A & B, Results of Composite Overwrap Program*®

LH, WRAP . LIMIT HOOP STRESS
TANK TEMP WRAP 2 tw
STATION CONCEPT COND. °K MATERIAL :ﬁfcsr: RESS cm cm ‘ :—g:NE“ . :’::'AP
em kN/cm? kN/cm?®
3050 A 1 20.4 S-GLASS 82.8 211 064 22.3 87.1
(INTEGRAL} 2 364 16.5 97.6
4 %64 -21.9 130
A 1 20.4 PRD 69.0 208 009 22.3 56.8
2 364 758 81.1
4 364 248 52.9
B 1 204 S5-GLASS 828 229 066 19.3 846
(ZEE)} 2 364 126 95.7
4 364 -219 73.0
B 1 20.4 PRD 69.0 229 109 193 629
2 364 49 779
4 364 -24.5 525
4065 A 1 20.4 S5-GLASS 82.8 305 092 118 81.4
2 164 3.9 90.4
4 364 219 73.0
A 1 20.4 PRD 69.0 .792 .155 11.9 433
2 364 49 69.0
.4 364 268 B1.1
B 1 20.4 S-GLASS 82.8 .348 069 15.2 83.1
2 364 8.3 94.0
4 364 -156 78.1
B 1 20.4 PRD 69.0 338 122 15.2 509
2 .364 1.3 76.9
4 364 -20.1 57.7

L

* THESE RESULTS ARE THE TABULAR LISTING IN THE PROGRAM PRINTQUT CLOSEST TQ THE
ACTUAL GEOMETRY; THEY ARE WITHIN A FEW PERCENT OF THE THEORETICAL VALUES.

Ly
I
F o o o iy 0 A A A S v o s sl s [l 2 A A S 1}'7_1%
} I f RADIUS=378.46c¢ch
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( J 3 —| ba [~ T t ta|
] b | —] f—
t, st =P - R Tst t
L ; '
| = |
f———— ——————]
b -4-bf->|
- b -




86

Table 10 Unit Weight Comparisans of Overwrapped Design Concepts,
LH, Tank 5ta. 3050

CONCEPT | WRAP WRAP ALLOWABLE | LINER ggx:i‘l’_-m weap &%‘ﬂ;’-‘z’ ToTaL (3
| MATERIAL | PRESTRESS HOOP STRESS | THICKN THICK .
TR IN LINER THICKNESS THICKNESS THICKNESS
kN/em* kN/cm? 1y, cm tp. cm tyy, CM Ty, €M t,cm
A S-GLASS 528 223 208 305 063 046 351
27.6 .254 341 - {4 - -
55.2 723 208 305 079 058 363
776 254 341 ‘043 032 372
PRD 69.0 223 208 305 096 048 363
: 276 254 341 - - z
55.2 223 208 305 138 069 374
2786 754 341 074 ‘037 378
B SGLASS 82.8 17.9 178 285 — _ -
19.3 228 310 068 050 360
55.2 17.9 178 285 _ _ Z
193 228 310 085 062 3712
PRO 69.0 17.9 178 285 _ -
19.3 228 310 106 053 363
55.2 179 178 285 - - —
19.3 228 310 158 079 389
(1} =t Ay
@ Tt PWPaL
3 T=TQ +'t'w
{4) NO DESIGN: ALL OF CRITERIA CANNOT 8E SATISFIED
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Table 11 Unit Weight Comparisons of Overwrapped Design Concepts, LH2 Tank Sta. 4065

CONCEPT WRAP WRAP ALLOWABLE LINER eauiv. (1) WRAP sauiv. (2 ToTAL (3)
MATERIAL | PRESTRESS HOOP STRESS | THICKNESS PANEL THICKNESS WRAP EQUIV.
IN LINER THICKNESS THICKNESS THICKNESS
kNfcm? %N/em? tpesm Byr €m gy, €M Ty, €M 1. em
A SGLASS B2.8 1.9 292 480 093 068 548
x 16.6 343 510 063 046 556
55.2 1.9 292 480 117 085 565
16.6 , 343 510 078 057 567
PRD 69.0 119 202 .480 154 077 557
16.6 .343 510 102 051 561
55.2 1.9 292 480 - 4 - —
16.6 .343 510 .154 077 587
B $-GLASS 828 14.8 "1 205 523 . 078 058 581
15.3 343 520 .070 .051 571
565.2 148 .305 523 097 071 594
15.3 343 520 085 062 582
PRD 69.0 148 305 523 124 062 585
16.3 343 520 114 057 517
55.2 148 .305 523 190 095 618
15.3 343 ‘ 520 170 085 605
NOTES: {1}  “BASELINE", ALL-ALUMINUM

(2) OVERWRAPPED DESIGN
(3) “SMEARED' THICKNESS, SKIN + STIFFENER {NO WRAP)
{4) COMBINED STRESS CRITERIA, COND. 1, AXIAL COMPRESSION + PRESSURIZATION
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Table 12 Concept A, Integral Stiffener Plus Overwrap

LH
) @2
TANK CRITICAL OVERWRAP OVERWRAP ) {31
STATION conp (1 MATERIAL PRESTRESS b 1y d t, 1, teg WEIGHT
cm kN/ 2 cm cm cm em cm cm kg/m?
3050 1,2 ALL - ) 18.1 335 4.44 — 343 455 126
ALUMINUM
3050 1,24 PRD 690 221 442 4 80 097 208 381 105
3050 1,2,4 5-GLASS 828 221 442 4.80 064 208 378 105
4065 1.2 ALL — 18.3 490 5.15 - 444 622 17.2
ALUMINUM
4065 1,24 PRD 69.0 16.85 582 544 155 292 600 1686
4065 1,24 5-GLASS 82.8 16.85 582 5.44 094 292 589 16.3
777777777774////// ST ITIITIITIIIIS |
' i _\

{1} COND 1 — END BQOST T tl Tyt = =

COND 2 — POST ORBIT INSERTION hid

COND 4 — POST CURE t,
2} EQUIVALENT THICKNESS OF {

ALUMINUM, INCLUDING WRAP i =

AND RINGS | b -]

(3

INCLUDING WRAP AND RINGS

RING SIZE FOR GENERAL
INSTABILITY {.75 KNOCK DOWN
EACTOR) BASED ON 76.2 cm RING
SPACING

STA. 3050; | = 17.04cm*, A = 219cm?
STA. 4065: | = 24.75¢cm*, A = 3.10cm?
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Table 13 — Concept 8, Bonded Zee Stiffener plus Overwrap

LH, CRITICAL! overwrap | overwrar| b 1, ty |y b, b, by 1, Y|t | weiGHT®
TANK  |COND!V | MATERIAL | PRESTRESS
STATION | COND .
cm kh/cm? cm cm cm cm cm cm cm cm em cm kg/m?
ALL
3050 1.2 ALUMINUM - 15.4 470 154 281 2900 | 382 1.482 - 331 480 1237
3050 1,24 |eRD 89.0 19.5 A91 168 295 1945 | 4.46 1826 | .107 228 391 10.8
3050 1,24 |sGLAsS 82.8 195 a8 168 295 1945 | 248 1826 | 069 228 389 108
ALL
4065 12 ALUMINUM - 16.0 295 203 A44 2.760 | 464 1.458 - 447 830 17.4
4065 124 [pRD 69.0 16.8 an 221 432 2315 | 575 2330 | 114 343 817 17.1
4065 124 [sGLASS 828 16.8 an 221 A32 2316 | 5.75 2330 | 053 343 615 12.0
{1} COND 1 — END BOOST
COND 2 — POST ORB!T INSERTION ty
COND 4 — POST CURE
(20 EQUIVALENT THICKNESS OF ALUMINUM, 1
INCLUDINGWHAPANDHINGS ¥ o e e 2 Sl 2 SV B A A A A A A S o P A S F 2 r r I
{3)  INCLUDING WRAP AND RINGS. RADIUS = 378.46 cm
FOR RING SIZE AND SPACING, SEE TABLE 1.
—»| b3 - : 4 ta

Y

a, ‘,"#
r
w

e
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Table 14. LH, Tank Concept C (Honeycomb Stiffening), Weight Determination

T=20"K UNITS STATION 3050 STATION 4065
FIBERGLASS; E, Nfem? 291 x 10¢| 2.91 x10* [2.91 x 10° 291 x 10° 2.91 x 10¢ 291 x10°
Y, cm 051 02 153 051 .102 .153
ALUMINUM:; E, Nfcm? 8.75x 10* 875 x10° [8.765 x10° 8.76 x 10¢ B8.76 x 10° 8.7 x 10°
1, cm 340 340 340 488 488 488
E, =t,(1+E,4/E,1,) cm 357 374 .39 505 521 539
C,= E;t,/E, 1, {1+E,1,/E, 1) 213 .289 .339 181 247 .292
core g N/em? 2620 2620 2620 2620 2620 2620
R cm 378.5 3785 3785 3785 3785 3785
fy, =21C, E,h/R N/cm? 10350h 14030h 16440h 8780h 11970h 14160h
ferimp 1 = HGo/t, Nfem? 7130h 7020h 6690h 5190h 5040h 4860h
for ferimp 1 1.45 2.00 246 1.69 237 2.91
R/p = R/C, h 1776/h 1310/h 1117h 2090/h 1533/ 1296/
K = 1=yt (f,  foimn 1) 1-.367g 1-80vc | 1—619¢ 142y, 1-59y, 1-.73y,
NCR = 1Ko fos by ; Nfcm 3800vcKeh | 6240y Keh | 6430y,K b | 4430y.K h 62407 K h 7630y K_h
Ncg REQUIRED + 950! Nfcm 6450 5450 6450 14800 14800 14800
Ncrimp 1= fcrimp 1 = Gcwh Niem 2620h 2620h 2620h 2620h 2620h 7620h
Ye A3 43 A3 47 A8 .49
Ner Nfcm 1380h 1770h 2020h 1665h 2160h 2390h
h em 4.80 3.70 3.20 8.70 6.90 6.20
c cm 4.60 3.48 2.96 B.43 6.60 5.88
WEIGHTS
ALUMINUM {.00276 kgfcm®) kg/m? 9.38 9.38 9.38 13.47 13.47 13.47
FIBEAGLASS {.00202 kg/cen® ) kg/m? 1.03 2.06 3.09 1.03 2.06 3.09
BOND kg/m? .97 87 97 97 .87 97
CORE (32 kgfem?®) kg/m? 1.47 1M 95 269 rak 1.88
T WEIGHTS kg/m? 12.75 1352 14.39 18.18 18.61 19.41

(1} PAPER CORE HNC - 3/8 - 60 (20}E - 2.0

{2} TO ACCOUNT FOR PLASTICITY CORRECTION
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Table 5. Concept C, Honeycomb Stiffening

WO EETEEEENNIr.

L CRITICAL | CORE @ QUTER t, ty h WEIGHT (4}
STATION conp. {1} MATERIAL MATERIAL {3} LER

. cm cm cm cm m
3050 1.2 ALUMINUM ALUMINUM 170 70 1.69 11.2
3050 1,2 ALUMINUM GLASS 340 051 418 13.3
3050 1,2 GLASS GLASS 340 051 481 13.1
3060 1.2 " PAPER GLASS 340 051 480 12.8
4065 1 ALUMINUM ALUMINUM 244 244 2.43 15.5
4065 1 ALUMINUM GLASS 488 102 5.02 18.7
4065 1 GLASS GLASS 488 102 | 682 19.1
4065 1 PAPER GLASS 488 102 | s70 18.2

(1} SEE TABLE 1

{2) ALUMINUM CORE, 1/4-2024-0015-2,3; GLASS REINFORCED FLASTIC CORE, HRH-3/8-2.5;
PAFER CORE, HNC-3/8-60(20)E-2.0

{3) INNER FACE MATERIAL IS 2219-T87; OUTER FACING: 2219-T87 ALUMINUM OR 1581
EPOXY/GLASS CLOTH

(4) WEIGHT INCLUDES FACING, CORE, AND WEIGHT QF TWO BOND LINES AT .97 kg/m?
{5} SUBSCRIPTS ¢, o AND i REPRESENT CORE, INNER AND QUTER FACES, RESPECTIVELY

RADIUS = 378.45¢cm

Tttt
h = ¢+ ——

2
TANK CYLINDER LENGTHS
STA, 3050, 1600 cm
STA. 4065, 457 cm

it =l



Table 16 Summary of Unit Weights, LH, Tank

LH, TANK CONFIGURATION WEIGHT (V) REL. WT. {2}
STATION; cm
ky/m?
3050 INTEGRAL STIFFENED, ALL ALUMINUM (BASE LINE) 12.6 1.000
ZEE STIFFENED, ALL ALUMINUM 12.7 1.010
HONEYCOMB, ALL ALUMINUM 1.2 888
INTEGRAL, 5-GLASS OVERWRAP 105 B34
INTEGRAL, PRD OVERWRAP 105 838
ZEE, 5-GLASS OVERWRAP 10.8 856
ZEE, PRD OVERWRAP 10.8 881
HONEYCOME, ALUMINUM CORE, COMPOSITE OUTER FACE 13.3 1.055
HONEYCOMB, GLASS CORE, COMPOSITE OUTER FACE 13.1 1.045
HONEYCOMB, PAPER CORE, COMPOSITE OUTER FACE 128 1015
4065 INTEGRAL STIFFENED, ALL ALUMINUM (BASE LINE) 17.2 1.000
2EE STIFFENED, ALL ALUMINUM 17.4 1.012
HONEYCOMB, ALL ALUMINUM 15.5 901
INTEGRAL, 5-GLASS OVERWRAP 16.3 946
INTEGRAL, PRD OVERWRAP : 16.6 963
ZEE, 5-GLASS OVERWRAP 17.0 9286
ZEE, PRD OVERWRAP 17.1 292
HONEYCOMB, ALUMINUM CORE, COMPOSITE DUTER FACE 18.7 1.086
HONEYCOMB, GLASS CORE, COMPOSHTE OUTER FACE 19.1 1.110
HOMEYCOMB, PAPER CORE, COMPOSITE OUTER FACE 189 ‘ 1.100
NOTE:

{DEALIZED PANEL WEIGHT, DOES NOT INCLUDE NON-OPTIMUM FACTOR (NOF)

(1) WEIGHT OF INTEGRAL-STIFFENED AND ZEE-STIFFENED DESIGNS INCLUDES RINGS AND WRAP’
HONEYCOMB DESIGNS INCLUDE CORE AND BOND'

(2) RELATION WEIGHT = WEIGHT OF DESIGN/WEIGHT OF THE INTEGRAL STIFFENED BASELINE DESIGN
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Table 17 Summary of Unit Weights, LO, TANK
LD, TANK | RADIUS OVERWRAP OVERWRAP t, Y teq WEIGHT REL, WT.
STATION MATERIAL PRESTRESS
cm cm kN/em? cm cm cm kg/m?
1240 336.80 BASE LINE - - 488 135 135 1.000
ALL ALUMINUM
PRD 22.1 120 .284 346 9.6 0.71
S-GLASS 449 079 004 205 8.82 61
BASE LINE - - 534 - 14.8 1.000
ALL ALUMINUM
1650 378.46 PRD 22.1 155 419 498 13.8 03
8-GLASS 449 412 343 424 118 .80
CASE 1 — END BOOST
t
CASE 2 — POST ORBIT INSERTION W
Y
Table 18 - Concepts Selected for Cost Evaluation
TANK CONFIGURATION (1) MAX Al SHEET
STATION UNIT Wﬁ'G”T THICKNESS STOCK
cm ka/m REQD, {2} cm |DESIGNATION
LH, TANK
3050 BASELINE, INTEGRAL STIFFENED, ALL ALUMINUM 12.6 4.78 B
ZEE STIFFENED, ALL ALUMINUM 13.2 331 D
INTEGRAL STIHFFENED + 5-GLASS OVERWRAP 10.5 5.01 B
ZEE STIEFENED + S-GLASS OVERWRAP 10.8 228 D
HONEYCOMB, PAPER CORE, COMPOSITE QUTER
EACE 12.9 .340 o)
4065 BASELINE, INTEGRAL STIFFENED, ALL ALUMINUM 17.2 5,59 A
ZEE STIFFENED, ALL ALUMINUM 174 447 D
INTEGRAL STIFFENED + S-GLASS OVERWRAP 16.3 5.74 A
ZEE STIFFENED + 5-GLASS OVERWRAP 17.0 343 D
HONEYCOME! PAPER CORE; COMPOSITE OUTER
FACE 18.8 488 D
LO, TANK
1240 BASELINE, ALUMINUM MONOCOQUE 13.5 488 D
ALUMINUM MONDCOQUE + 5-GLASS OVERWRAP 8.2 094 D
1550 BASELINE, ALUMINUM MONOCCQQUE 14.8 534 D
ALUMINUM MONOCOQUE + 5-GLASS OVERWRAP 11.8 343 D

{1) IDEALIZED PANEL WEIGHT, DOES NOT INCLUDE NON-OPTIMUM FACTCOR {NOF)
{2) STIFFENER PLUS SKIN THICKNESS; RING FRAME ATTACHMENT NOT INCLUDED
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Table 19 - Transportation Costs

CONCEPT TANK UNIT AREA INCREMENTAL | THEORETICAL NOF {1} | ESTIMATED {(2) | DELTA TRANSPORTATION
STATION | WEIGHT WEIGHT CYLINDER CYLINDER WEIGHT DELTA COSTS
om kg/m* m? kg kg kg kg $x10¢

LH, TANK

BASELINE 3050 126 3575 4510

(INTEGRAL) 4065 11.2 929 1600 6110 1.25 7630 . - -

BONDED 2 3050 13.2 357.5 4730

4065 17.4 829 1620 £350 1.25 7940 + 310 + B8
INTEGRAL 3050 105 3575 3750
+ OVERWRAP 4065 16.3 929 1520 5270 1.25 6590 - 1040 -229
BONDED 2 3050 108 3575 3860
+ QVERWRAP 4065 17.0 925 1580 5440 1.25 6800 - B30 -18.3
HONEYCOMB 3050 129 3575 4560
STABILIZED 4065 189 925 1750 6310 1.10 5920 - 710 -156
LO, TANK
BASELINE 1240 13.6 85.0 1150
1550 148 83.5 795 1945 1.09 2040 - -
OVERWRAPPED 1240 8.2 85.0 694
1550 118 53.5 626 1320 1.05 1385 - 665 -14.4

(1) NON-OPTIMUM FACTOR.
(2}  NOT INCLUDING THE REGION OF THE AFT INTERSTAGE ATTACHMENT.
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COSTS NOT INCLUDING OVERWRAP

Tahle 20 - Manufacturing Cost Breakdown

CONCEPT A
INTEG. STIFFENERS LH; Cy!

CONCEPTE

BONDED STIFFENERS & RINGS LH, Cyl

NOMN- RECURRING (5) RECURRING (445} NON- RECURRING (5) RECURRING (445)
HOURS AMOUNT HOURS AMOUNT HOURS AMOUNT HOURS AMOUNT

MATERIAL DOLLARS $1,081,794 $ 96,279,710 $ 318,314 $28,329,934
TOOL MATERIAL DOLLARS 350,619 345,753 128,433 241,119
RC 20 MANUFACTURING 260,933 2,794 592 5,699,310 61,039,610 177,794 1,904,174 3,586,674 38,413,279
RC 30 QUALITY CONTROL 44 340 555,137 583,581 7,306,434 30,855 386,305 367,464 4 600,649
RC 74 TOOL FARBR. 103,985 1,149,034 272 951 3,016,109 83,735 921,272 190,985 2,110,384
RC 40 TOOL DESIGN 43,855 593,797 54,638 739,799 24,355 329,767 38,809 525,474
HC 52 MFG. MANAGEMENT 39,140 488 858 B54 897 $ 10,677,663 26,669 333,096 538,001 6,719,632

TOTAL $7,013,.831 $179,405,078 $4,325,361 $80,940,471
UNIT COST $1.402,766 $ 403,157 $ 865,072 $ 181,889
NUMBER OF METERS 488 488 488 488
DOLLARS PER SO. METER $ 2875 $ 826 $ 1,770 $ 372

CONCEPT C MONOCQQUE- LO, Cyl
PAPER CORE SANDWICH - LH, Cy!
NON- RECURRING (5) RECURRING (445} NON- RECURRING (5) RECURRING {445)
HOURS AMOUNT HOURS AMOUNT HOURS | AMOQUNT HOURS AMOUNT

MATERIAL DOLLARS $ 304,898 $35,145,945 $ 54,018 $4,807 581
TOOL MATERIAL DOLLARS 247,302 120,740 110,701 53,562
RC 20 MANUFACTURING 131,129 1,404,392 2,558,877 27,405 687 || 13,950 149,405 301,715 3,231,368
RC 30 QUALITY CONTROL 27.936 349,759 260,638 3,263,188 3670 45,948 32,955 412597
RC 74 TOOL FABR. 34,210 378,020 95,025 1,050,026 | 31,560 | 348,738 44,790 494 930
AC 40 TOOL DESIGN 15,075 204,115 18,843 255,134 | 11,217 151,878 10,860 147,044
RC 52 MFG. MANAGEMENT 19,669 245 666 ‘383,832 4,794,062 2,090 26,104 45,260 565,297

TOTAL $3,224,153 $72,034,782 $886,792 $9,712,379
UNIT COST $ 644831 $ 161876 $177,358 $ 21826
NUMBER OF SQ. METERS 488 488 66.6 66.6
DOLLARS PER SQ. METER $ 1,320 % 332 $ 2,660 % 328

OVERWRAP COSTS (S - GLASS)
DOLLARS PER S5QUARE METER
NON - RECURRING RECURRING

LH, TANK 439 108
LC, TANK 861 246




Tabie 21 Manufacturing Cost Comparison

UNIT COSTS, $/m’ PROGRAM COSTS, $ x 10°
CONCEPT NON— RECURRING NON— RECURRING | TOTAL | DELTA COST %
RECURRING RECURRING X 10°
LH, TANK
(1 (2
BASELINE
({INTEGRAL} 2875 826 6.4 166 172.4 -
BONDED Z 1770 372 4.0 74.6 78.6 --93.8
INTEGRAL
+ OVERWRAP 3314 934 7.4 188 195.4 +23.0
BONDED Z
+ OVERWRAP 2209 480 5.0 96.2 101.2 -71.2
HONEYCOMB
STABILIZED 1320 332 3.0 66.5 69.5 —102.8
LO, TANK
(3) a)
BASELINE 2660 328 1.84 20.10 21,94 -
OVERWRAFPED 3520 614 2.43 37.90 40.33 +18.4
(1) UNIT COSTS x 5 TANKS x 450.4m*
(2)  UNIT COSTS x 445 TANKS x 450.4m*
{3)  UNIT COSTS x 5 TANKS x 138.5m*
{4)  UNIT COSTS x 445 TANKS x 138.5m
Table 22 Total Program Cost Increments
TRANSPORTATION MANUFACTURING TOTAL PROGRAM
DELTA COST DELTA COST DELTA COST
CONCEPT $ x 10¢ $x 104 $ x 10¢
LH, TANK
BASELINE {INTEGRAL) — — —
BONDED Z + 6.8 - 938 —~ B7.0
INTEGRAL + OVERWRAP ~22.9 + 230 + Q1
BONDED Z + OVERWRAP -18.3 - 7.2 — 895
HONEYCOMB STABILIZED —16.6 —10249 —118.5
LO, TANK
BASE LINE - - -
OVERWRAPPED —14.4 + 18.4 + 4.0
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" Table 23 Typical Mechanical Properties for Model Design

TEMPER- Feu Fey Fey £
AT'QJ:E kN/em? kN/cm? kN/cm? x 10° N/em?®
2219-T81 367 410 317 32.3 6.97
INNER FACE) 294 456 35.2 5.9 7.24
78 53.2 a0 419 8.07
TEMPER- F F E E
ATURE 0° DIRECT. 90° DIRECT. 0° DIRECT. 90° DIRECT.
°C kN/ecm? kN/cm? 104 N/em?® 10°% N/em?
cLass cLothf! 367 | 285 239 180 168
(QUTER FACE) 294 37.3 29.1 220 2,06
. 78 55.63 4349 266" 2.50'3!
TEMPER- Fe Eg Gl Gew
ATURE N/cm? N/em? MN/cm? N/cm?
Honevcoms 2! 367 182 - 3240 _
CORE 204 576 48400 10700 7800
78 - _ 19000 _

NOTES:
{1} RELIAPREG R-1500/7581, 2 PLIES

(20 TUF200-3/16 =40
(3 ESTIMATED: F(RT) x 1.48; E(RT)x1.21

Table 24 Tensile Properties of Glass-Fabric Facing Materials

TENSILE PROPERTIES

FABRIC STRENGTH, kN/cm? ‘MODULUS, 10° x Nfem?
WEAVE NO. OF - - -
DIRECTION PLIES 294°K 367°K 294°K 367°K

CORDOPREG E - 295/7581 - 1550
o’ 8 345 19.9 226 1.31
2 350 179 242 1.37
00° 8 336 150 1.94 0.92
2 3.2 16.2 218 0.92

0° 14 sa.3M 266"

RELIAPREG R - 1500/7581

o° 8 39.6 33.0 2.21 2.02
2 37.3 285 220 1.90
90° 8 12,0 26.6 197 1,63
2 20.1 239 2.06 168

= 3a6@ ‘ 2.4g2 24213

{1) REPORTED VALUE FROM FERRO CORPORATION; LAMINATE MOLDED IN PRESS AT 56N/ecm3, CURED AT
436°K FOR 1 HOUR AND POSTCURED IN AN OVEN FOR 311°K FOR 4 HOURS.

(2} REPORTED VALUE FROM RELIABLE MANUFACTURING COMPANY; LAMINATE VACUUM-BAG CURED FOR1
HOUR AT 393°K

(3) TESTED AT 344°K
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Table 25 Cure Evaluation Data of Glass-Fabric Facing Materials

CURE COMPOSITE PROPERTIES
CORDOPREG E - 203/7581 RELIAPREG R - 1500/7581
TEMPERATURE TIME | THICKNESS | FLEXURAL STRENGTH THICKNESS | FLEXURAL STRENGTH
°K HOUR cm N/cm? cm N/ecm®
367 2 el (1 0.335 49200
4 0.338 14300 0.335 57600
ase° 2 0.335 8600 0.328 58500
4 0.333 47600 0338 56200
394 2 0.345 51100 0.333 57800
4 0.356 43400 0.328 56700
409 2 0.351 56400 0.328 60500
4 0.345 54000 0.315 61600
a 2 0.351 52900 0.328 60200
a 0.335 55800 0.322 61800
1) LAMINATE WAS NOT SUFFICIENTLY CURED TO PREPARE FLEXURAL BEAM SPECIMENS.
Table 26 Core Shear Properties of TUF-COMB 200 Honeycomb
CORE-SHEAR PROPERTIES (1)
L-DIRECTION W-DIRECTION
TEnn STRENGTH MODULUS STRENGTH MODULUS
°K N/icm® AVG Nfecm? AVG Niem®* AVG N/cm®  AVG
204 150 182 (745012} 10700 106 109 7450 7800
172 9930 110 8140
220 11400 111 7860
367 54 54 3380 - 3240
54 - 3380 - _ - _
54 3040
ag 198 206 16700 19000
215 21900 - - - -
220(3) 18400{3)
NOTES:
(1) ALL TEST SPECIMENS EXHIBITED CORE SHEAR FAILURE.
{2)  OMIT FROM AVERAGE.
{3) TESTED AT —130°C WHILE THE SPECIMEN WAS AT A TRANSIENT TEMPERATURE

iio0

CONDITION DUE TO INCOMPLETE EXPOSURE TO COLD ENVIRONMENT.



Table 27 Compressive Properties of TUF-COMB 200 Honeycomb Sandwich Panel

CORE COMPRESSIVE PROPERTIES
paneL 1 (1 pANEL 2 (2}
TEST STRENGTH MODULUS STRENGTH MODULUS
TEMP.
°c N/ecm® AVG Nfem? AVG N/em® AVG N/em®? AVG
294 546 576 42600 48400 574 617 | 47400 ‘51300
595 43300 683 56600
586 59400 593 49300
367 168 182 199 185
195 - - 183 - -
184 188
20413} 366 65600 - - — -
NOTES:
{1} THE PANEL WAS CONSTRUCTED WITH CORDOPREG E-293 FACING ON ONE SIDE
AND 2219-T62 ALUMINUM SHEET BONDED TO THE CORE WITH FM-123-2 ADHESIVE
FILM FOR THE OTHER FACING.
12) SAME BASIC CONSTRUCTION AS PANEL 1, EXCEPT RELIAPREG R-1500 AND RELIA-
BOND E-393-1 ADHESIVE FILM WERE USED.
(3) DATA REPORTED BY HEXCEL FOR TUF-COMB 200-3/16-4.0 HONEYCOMB.

Table 28 Flatwise Tensile Strength of TUF-COMB 200 Honeycomb Sandwich Panel

FLATWISE TENSILE STRENGTH
paneL 1 {1} PANEL 2 (2}
TEST STRENGTH STRENGTH
TEMP FAILURE FAILURE
°K Nfem® AVG MODE N/em® AVG MODE
2094 375 354 50% CORE SHEAR 448 452 B0% CORE SHEAR
306 20% CORE SHEAR 475 100% CORE SHEAR
379 90% CORE SHEAR 434 100% CORE SHEAR
367 80 85 | 100% GLASS FACING 119 96 | ADHESIVE, CORE TO AL
76 100% GLASS FACING 89 ADHESIVE, CORE TO AL
89 100% GLASS FACING 80 ADHESIVE, CORE TO AL
NOTES:
(1} THE PANEL WAS CONSTRUCTED WITH CORDOPREG E-293 FACING ON ONE SIDE AND 2219-T62
?kgmlgum SHEET BONDED TO THE CORE WITH FM-123-2 ADHESIVE FILM FOR THE OTHER
(2) SAME BASIC CONSTRUCTION AS PANEL 1, EXCEPT RELIAPREG R-1500 AND RELIABOND E-393-1

ADHESIVE FiLM WERE USED.
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Table 29 Test Plan Qutline

TEST ARTICLE
#1 #2
1. LIMIT COLD LOAD TEST (COND 1, END BOOST)
A, FILL WITH LN, INSPECT. X %
B. APPLY LIMIT PRESSURE, HOLD, RELIEVE, & INSPECT. X X
C. APPLY LIMIT PRESSURE + BENDING MOMENT (BM), HOLD, EMPTY TANK,
& INSPECT X X
2, LIMIT HOT LOAD TEST {COND 2, POST ORBIT INSERTION)
A. FILL TANK, HEAT TO +200°F, & INSPECT, X
B. APPLY LIMIT PRESSURE AT TEMPERATURE, HOLD, EMPTY TANK,
8 INSPECT X
2a. LH, TANK FILL (ALTERNATE TEST CONDITION POSSIBLE BETWEEN LIMIT
HOT LOAD AND ULTIMATE COLD LOAD TESTS}
A, FILL WITH LH, . MAINTAIN FULL TANK, EMPTY TANK, & INSPECT X X
3. ULTIMATE COLD LOAD TEST {COND 1, END BOOST) CONT'D
A, FILLWITH EN, , APPLY LIMIT PRESSURE + LIMIT BM, HOLD, RELIEVE,
& INSPECT X X
B. APPLY LIMIT PRESSURE + ULTIMATE BM, HOLD, & RELIEVE X X
€. APPLY LIMIT PRESSURE + ULTIMATE BM, INCREASE BM TO
TANK FAILURE X X
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Table 30 Loading Conditions

SYSTEM
INTERNAL APPLIED BENDING
TEMP. PRESSURE MOMENT
CONDITION °c N/fcm?® cmi
1. END BOOQST {LIMIT) 78 38.5 25,0 x 10°
1. END BOOST (ULTIMATE!} 78 38.5 35.0 x 108
2. POST ORBIT INSERTION 357 35.1 -
2a. LH, TANKFILL 20 - -




Table 31 Cond. 1 — Model Stresses and Strains at Ultimate Load

TENSION COMPRESSION
SIDE SIDE
(SEE NOTE} {SEE NOTE}
Ny, APPLIED, Nfem 3974 —15622
Ny, APPLIED, N/em 2580 2580
{fyth = 0.810 Ny + 0.041 Ny, Nfcm 3326 -1128
{fyt) = 0.B10 Ny + 0.041 Ny, Nfcm 2253 2028
{fxt] ‘= Nx - tfxt), N/em 648 —398
(fyt} = Ny - (fyﬂ, Niem 327 552
fy. Nfem? 43600 —14800
frp, Nicm? 26600 26600
LvS Nfcm?* 11100 —6800
fyr Nfem? 5600 9440
= -6 . )
e “Elfy — v 4250 x 10 2800 x 10
— -5 6
EY-%(fY—ufx) 2060 x 10 3840 x 10
ep=+tan T (THERMAL) —4530 x 10°° —4530 x 107¢
€y (INCLUDING THERMAL} —280 x 107* —7330x 10°°
TL
ey {INCLUDING THERMAL) —2470x 10°¢ —690 x 10°¢
TTL
NOTE:

STRESS AND STRAIN DUE TO EXTERNAL APPLIED LOADS ONLY,
NO THERMAL EFFECTS EXCEPT FOR TOTAL STRAIN.
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Table 32 Tensile Properties of Weld Specimens of 2219-T81 Aluminum (1}

ULTIMATE
0.2% YIELD | TENSILE ELONGATION
WELD SPECIMEN SERIAL | THICKNESS | STRENGTH | STRENGTH | IN5.08CM FAILURE
SIMULATION DESCRIPTION NUMBER om MN/m? MN/m? % LOCATION
TRANSITION RING TRANSVERSE WELD 1 0.160 273 n 15 HEAT AFFECTED
TO CYLINDER GIRTH | BEAD-AS RECEIVED 9 292 332 15 ZONE
WELD, 2318
ALUMINUM ROD 3 288 330 1.0
ADDED TRANSVERSE WELD 4 0.155 234 281 255 WELD AREA
BEAD GROQUND
FLUSH — BOTH 5 241 294 25
SIDES 6 239 285 2.0
CYLINDER LONG!- AXIALLY 7 0.160 330 425 85 GAGE AREA
UDINAL SEAM ORIENTED WELD
WELD, NO ROD 8 337 428 85
appep'? 9 339 432 10.0
10 330 423 8.5
TRANSVERSE " 0.160 310 332 1.0 WELD AREA
ORIENTED WELD 12 321 235 ‘5
13 314 a32 15
14 3N 342 1.6
PREPRODUCTION 1P 0.157 328 MR WELD AREA
TRANSVERSE op 20
ORIENTED WELD
P N.R. 330
ap 335
NOTES:

{1 ALL SAMPLES WELDED IN THE T31 CONDHTION AND AGED WITH THE CYLINDER SECTION TQ THE TB1 CONDITION AFTER WELDING

(2) WELDSSEAM LEVELED AFTER WELDING AND BEFORE AGING




Téble 33 Tensile Test of Transverse Welds of 6061-T42 to 2212 T42
Aluminum Alioy Using 4043 Weld Wire

ULT. TENSILE FAILURE LOCATION

WELD DIMENSIONS AREA LOAD STRESS

CONDITION cmicm cm? N N/cm?
FLUSH 1.284/.590 .758 13,360 17,600 PARENT METAL 6061
FLUSH 1.280/.600 73 13,750 17,800 PARENT METAL 6061
FLUSH 1.292/.621 .801 14,160 17,600 PARENT METAL 6061
FLUSH 1.287/.580 746 13,250 17.800 PARENT METAL 6061
INTACT 1.275/.611 776 13,800 17,800 PARENT METAL 6061
INTACT 1.280/.609 .776 14,550 18,700 PARENT METAL 6061
INTACT 1.290/.613 792 14,150 17,900 PARENT METAL 6061

Table 34 Tensile Properties of 2-Ply Laminates of Reliapreg R-1500/7851 M
TEST SAMPLE

TEMPERATURE NUMBER THICKNESS STRENGTH MODULUS
12) cm MN/m? 10° MN/m’®

] 0.0612 363 20.2

ROOM TEMPERATURE 2 0.0620 352 201

3 0.0615 . 348 19.9

PRIOR TEST RESULTS 372 22.0

{1} SPECIMEN CONFIGURATION AND TEST PROCEDURES WERE PER ASTM D638,
ORIENTATION WAS IN WARP (0°) DIRECTION,

(20 SPECIMENS WERE CUT FROM A LAMINATE CURED FOR 3.5 HOURS AT 394°K,
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Table 35 Ftexural Strength of 12-Ply Laminates of
Reliapreg R-1500/7581¢1)

TEST SAMPLE FABRIC FLEXURAL
TEMPERATURE NUMBER WEAVE THICKNESS STRENGTH
{2} DIRECTION em MN/m?
1 0° 0.284 644
2 0° 0.290 672
o 0.292 656
ROOM TEMPERATURE 3 ¢
4 90° 0.282 541
5 90° 0.290 527
PRIOR TEST RESULTS 0 0.328 567

NOTES:
(1) TESTS WERE PERFORMED PER ASTM D790

(2) THE1.27 cm WIDE BY 5.08 cm LONG SPECIMENS WERE CUT FROM A LAMINATE
WHICH WAS CURED FOR 3.5 HOURS AT 394°K

Table 36 Flatwise Tensile Strength of Tuf-Comb 200
Honeycomb Sandwich Panel

TEST SAMPLE
TEMPERATURE NUMBER STRENGTH FAILURE

1) Nfcm? MODE

ROOM TEMPERATURE 1 526 ADHESIVE, CORE TO

SKIN

2 558
3 534

PRIOR TEST RESULTS (2] 452 CORE SHEAR

NOTES:

1) THE TWO INCH SQUARE PANELS WERE CONSTRUCTED FROM TUE-COMB 200

CORE BONDED TO 2-PLY R-1500/7581 FACINGS {AND ALUMINUM LOAD
BLOCKS} USING FM-123-2 ADHESIVE,

(2) THE PANEL WAS CONSTRUCTED WITH RELIAPREG R-1500 FACING ON ONE
SIDE AND 2219-T62 ALUMINUM SHEET BONDED TO THE CORE WITH
RELIABOND E-393-1 ADHESIVE,




APPENDIX A
DESIGN STUDIES -~ ORIGINAL PROGRAM EFFORT

OBJECTIVE

The objective of the original program was the evaluation of the effectiveness of
composite materials in providing increased structural efficiency in large-scale pro-
pellant tanks. '

DESIGN EVALUATION

Analytical evaluations were performed for several concepts of composite rein-
forced tanks applicable to the integral Orbiter and Booster tanks of the Grumman
C2F Space Shuttle configuration (see Figures 49 and 50). Composite properties
were determined, analytical methods were developed, parametric weight optimization
studies were carried out, and cost analyses were performed.

The bageline metal tank designs submitted in the technical proposal were used
for comparison in the study; their unit weights are included in Table 50. Six design
concepts which apply composite reinforcement to large-scale propellant tanks were
studied. These are depicted in Figure 51. They are: Concept 1, Integrally Stiffened/
External Ring Design; Concept 2, Stiffened Z Design; Concept 3, Integrally Stiffened/
Internal Ring Design; Concept 4, Reinforced-Stiffener Design; Concept 5, Honeycomb
Design; and Concept 6, Corrugated Stiffened Design. The concepts were investigated
at two stations on the Orbiter and Booster LOg tanks and at three stations on the Or-
biter and Booster LHy tanks. The locations were chosen to represent the range of
loading over a tank length. :

Critical design loads for the tank locations are given in Tables 37 through 40.
The design criteria and methods of analysis developed in the original contract effort
are equivalent to those given in the main text except that a safety factor {FS) of 1.5
for ultimate load was used instead of a factor of 1.4,

Concept 1, Integrally Stiffened/External Ring Design

For Concept 1, the aluminum tank is reinforced with internal integral stringers
and external rings. Vehicle flight loads produce stresses in the axial direction while
internal pressure and constrictive overwrap produce stresses in the circumferential
direction. Maximum hoop tension stress in the liner occurs during the cold conditions
with internal pressurization, Maximum compression stress in the liner occurs in the
elevated-temperature condition.

Five fibers were considered in the original study and all were analyzed for fhis
concept. The composites, and the arbitrarily-chosen pre-tensions on a rigid mandrel

are:
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S-901 glass/epoxy 51700 and 69000 N/cm?2

PRD-49-1/epoxy - 69000 and 103400/Nem?2
Boron/epoxy 41400 and 62100 N/cm?2
HTS graphite/epoxy 51700 and 69000 N/cm?2
Boron/aluminum 41400 and 55200 N/cm2

At the time the design sfudies were initiated, experimental values of achievable
pretensions were lacking. The values analyzed represented a range then thought
reasonable, The use of two values was desirable in order to establish the design im-
plications of various prestress magnitudes. Physical and mechanical properties for
the composites are discussed under material properties,

For design of Concept 1, use was made of the methods and automated procedures
discussed in the analysis section of the main text, After determining the optimum
compression panel and its longitudinal working stress, the required amount of over-
wrap is determined and general instability checks are made. The results of the analy-
sis for this concept are presented in Tables 41a through 41d. Overall, S-glass and
PRD-49-I fiber composites result in lower weight designs and, in general, a higher
overwrap prestress will result in a lower unit weight, Boron and graphite epoxy com-
posites are also effective, but these and boron/aluminum exhibit significant compres-
sive stresses in the wrap at low temperature (~185°C) and zero internal pressure
(See Table 42). This condition would exist during filling of the propellant tanks. Be-
cause of the above trends, only S-glass and PRD overwrap were considered in the re-
maining concepts that require overwrap reinforcement.

Concept 2%, Zee=Stiffened Design

This concept differs from Concept 1 in the stringer type and placement, using
external bonded and attached zees. Table 43 contains summaries of the results for
this concept.

Concept 3*, Integral Stiffened/Internal Ring Design

This concept is similar to Concept 1 but with infernal instead of external rings.
The results are given in Table 44,

Concept 4, Reinforced-Stiffener Design

This concept studies the advantages of composite reinforcement of tank stiffen~
ing members (rings and stringers). Figures 52 and 53 show typical examples.
The hydrogen tanks with their long cylindrical lengths and higher load intensities will
provide better opportunities for reducing stiffener weight, On the basis of their size
alone, rings also present a high potential for reducing weight,

In a parallel study not related to this contract, (Ref. 22), the use of boron-
aluminum to replace stiffness-designed all-aluminum tank frames resulted in 2 27%

— - ——

*The designs and methods of analysis for Concepts 1, 2, and 3 are similar be-
cause axial and ring stiffening is used in conjunction with circumferential overwrap.
The stiffening differs in type, location, and method of attachment,
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weight saving, Boron-epoxy reinforced stiffened panel tests (Ref. 23) show weight
savings of 15% to 25% for load intensities of interest in this study.

Because of the large difference in coefficients of thermal expansion between
aluminum and boron-epoxy, bond strengths and cure temperatures become critical
for reinforcement of aluminum members. Since the basic tank is aluminum, rein-
forcement of integral stiffening would encounter this problem. An alternate design,
which lessens the thermal incompatibility, uses a small integral tang with the basic
shell and mechanically fastens a titanium stiffener to the panel. The boron-epoxy is
then used to reinforce the titanium ring or stringer. Then titanium provides a buffer
of intermediate thermal coefficient of expansion between the composite and the alumi-
num,

Boron-aluminum also has a much lower thermal coefficient of expansion than
aluminum, Three methods of attaching boron-aluminum to aluminum are proposed:
bonding, brazing and mechanical fastening, Bonding would be susceptible fo the same
problems that occur with boron-epoxy. Brazing requires high temperatures which
would degrade the properties of the adjacent structure. Mechanical fastening (through
solid aluminum sections of the boron-azluminum composite reinforcement) would be
preferred. Analysis of ring designs such as those shown in Fig. 52 resulted in a
37% weight saving by means of the horon-aluminum reinforcement.

Boron-aluminum, because of its high internal peel, bond and shear strength, is
used more flexibly than boron-epoxy. The boron-epoxy is more readily used as a
solid bar acting as a flange on a stiffener. Such designs independently investigated
in Boeing's stiffened panel tests and analyses of Ref. 23 are relevant to tank design
since the stiffeners are bonded to the basic panel and do not require penetrations of
the pressure shell. Design load intensity of the panels was approximately 14000 N/em.
Stiffeners of aluminum and titaninm were considered in the Boeing study. Effects of
the bonding of the boron-epoxy to the metal stiffeners were reflected in the test values.
The designs of the stiffened panels are shown in Fig. 53. In the above reference,
analyses of test results indicate that ""panel failure was in part caused by the high peel
loads developed in skin-stiffener bonds" due to buckling of the intermediate skins.
This caused the designs to fall somewhat short of their design strength. However,
significant weight savings were indicated in comparison with all-metal stiffened
panels,

In the present study, the design features boron-epoxy-reinforced, external
zee~stiffening. Part of the stringer outside flange is a unidirectional boron/epoxy
composite. The computer program that was used for Concept 2 was also used for
this design, the one notable difference being that the minimum skin gage was greater
in this case, since the benefit of hoop overwrap is not present, After all-metal de-
signs were obtained, outside flange material in excess of the weh thickness was re-
placed by an equivalent amount of boron-epoxy composite. (Note that an all-metal
zee—-stiffened design is heavier than an all-metal integrally stiffened design, so that
the resulting weight savings due to boron reinforcement are not sufficient to reduce
the weight below that of the baseline.) Since the composite is unidirectional, the ex-
tent of reduction of stiffener torsional rigidity would have to be assessed through
festing,

Weights for Concept 4 designs are shown in Table 45,
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Concept 5, Honeycomb Design

This concept consists of 2 honeycomb sandwich made up of 2219-T87 aluminum
alloy face sheets in combination with a 2024-T81 aluminum alloy core.

In the original program effort, the general and panel instability for honeycomb
gandwich construction was determined through use of the automated procedure of
Ref. 24. Utilization of this program requires that the sandwich cross-section be
converted to an equivalent isotropic sheet. General instability allowables were de-
termined at each design station as if the corresponding section were constant along
the entire cylinder length. For panel instfability, a cylinder length of one ring spacing
was used and the ring area and inertia were set equal to zero. 'Knockdown" factors
of .75 and . 90 were used with the general and panel instability allowables, respec-
tively.

The results for this concept are given in Table 46. For the Orbiter LOy
tank, the minimum required face sheet thickness alone satisfied both the general and
panel instability allowables. Therefore, a monocoque construction is adequate for
this tank.

Concept 6, Corrugation-Stiffened Design

In this concept, internal pressure loads are beamed to the tank rings by means
of longitudinal corrugations which also carry tank axial and bending loads. The cor-
rugations between rings are analyzed as stiffened panels. Hoop loads are reacted
only by the rings since corrugations have minimal transverse external stiffness,
Composite overwrap is applied circumferentiaily to the rings which are then analyzed
for hoop loads in a manner analogous to an unstiffened, circumferentially overwrapped
tank but with areas substituted for thicknesses. The rings should also be sized to
sustain vehicle flight loads. In Ref. 24, it is observed that the ring stiffness cri-
teria of Shanley (Ref. 25), is unconservative for corrugation-stiffened cylinders.
Overall tank strength is determined by the general instahility load obtained using the
work of Ref, 24, For the cases where the ring stiffness, based on hoop load or
flight load requirements, is insufficient from the general instability standpoint, the
ring size is increased until the general instability load equals the applied load. All
strength and stability criteria are then satisfied.

A method was evolved for the structural analysis of corrugation-stiffened panels
composed of flat elements and subjected to axial compression and lateral pressure
{beam column). A digital computer program was written in order to systematize the
calculations for a large number of loading conditions, For a given ring spacing
(column length) and angle of corrugation (see sketch), the corrugation thickness and
element length were determined for 2 minimum positive margin of safety. The ring
spacings considered were limited to the existing vehicle ring spacing or half this value.
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Calculated shell weights for the corrugated wall concept are shown in Table
47. They include the weights of intermediate rings required to support the hoop
pressure load and also to reduce the column length of the wall section.

MATERIAL PROPERTIES USED IN DESIGN

In addition to the material properties data given in the main text, additional
data was required in the initial effort for boron-epoxy and graphite-epoxy filament
wound composites. They appear in Table 48. The boron-epoxy room temperature
data was developed in Ref. 26 and the cyclic life and sustained load data are de-
rived from Ref. 27. The coefficient of expansion of boron-epoxy was obtained
from Ref. 28, For the graphite-epoxy (Courtalds or Hercules ATS), the refer-
ences were as follows: modules of elasticity, Ref. 29 and 30; strength, Ref. 31
and 32; cyclic fatigue, Ref, 32; thermal coefficient of expansion, Ref. 33.

MANUFACTURING OPTIONS AND ESTIMATED COSTS

As part of the evaluation of the six concepts, alternative designs and methods
of fabrication were reviewed by the Grumman Product Manufacturing Department.
The alternatives were appraised on the basis of cost, manufacturing complexity and
the requirement for successful technology development, and a system of baseline
values established for each of these parameters, This made it possible to evaluate
each of the alternatives in terms of dollars per kilogram or dollars per square meter.
Welding and X-rays were estimated in dollars per linear meter. Precision of the
dollar value assigned to each process or operation was not as critical as the level of
manufacturing difficulty, as reflected by the relative cost of the various designs.
Also, since relative cost of the various designs was the consideration, only the Or-
biter tank costs were estimated. '

Estimates were based on industry-wide manufacturing facilities. Limitations
of the existing capacitfies for machining, rolling, brake-forming, welding, sonic test-
ing, chem-milling etc, were considered, Costs of fooling and costs of test facilities
that were required because they were not commercially available were amortized
over the entire tank production as nonrecurring costs,
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The approximate dimensions of the cylindrical portions of the Shuttle tankage

are given below.

Tank Length, em Diameter, cm
Orbiter LOg 610 366
Orbiter LHg 1880 366
Booster LH2 2920 1000
Booster LOg 690 1000

MANUFACTURING OPTIONS

Prior to discussing the estimated costs, a description of the alternative de-

signs and methods of fabrication is presented. For the integrally stiffened/external
ring design, Concept 1, three alternative designs (Figure 54) are possible, depend-
ing upon available material stock size., For the Orbiter LH, tanks, they are:

(a) Stock size: 6.35cmx 295 cm x 8566 cm
The stiffeners on one side of the plate are integrally machined to their
designed height. The ring frame flanges on the opposite side of the plate are
also integrally machined, Affer the tank has been overwrapped, the frames
are riveted to the flanges, The design implications of this concept are
designated (A) on Fig. 54 through 58.

(b) Stock size: 5.1 cm x 290 cm x 808 cm :
The stiffeners on one side of the plate are integrally machined to their de-
signed height, After the metal is welded and overwrapped, the frames are
bonded to the tank's external surface. The design implications of this con-
cept are designated on Fig. 54 through 58.

(¢) Stock size: 2.54 cm X 366 cm x 1880 cm
Flanges to be used as stiffener attachments are integrally machined on one
side of the plate., Extrusions are riveted to the flanges in order to achieve
the stiffeners' designed height, Frames are applied as in (b). The design
implications of this concept are designated © on Fig. 54 through 58,

In the discussion of estimated costs at the end of this section, these alternatives are
denoted as 1a, 1b, and 1¢, This notation is also used for the Orbiter LOg tanks.

Two methods of fabrication for the above design may be used to construct the

LH, tank's eylindrical portion.
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Method 1: The cylinder is constructed from four 1880 cm-long x 283 cm
cylindrical-arc segments which are welded together. Each segment is
composed of a plate (or plates) machined while flat and then formed into
arcs of a circular cylinder, These segments are machine welded in a
fixture (See Figures 55 and 56). Material stock sizes impose constraints
on this procedure. The maximum length available for the 5.1 cm stock
is 808 cm, for 6.35 cm stock, it is 856 cm. Since the tank length is 1880
em, the segments fabricated from 5.1 to 6.35 cm stock must be spliced
(Figure 55). Segments fabricated from 2. 54 em stock, which has a length
of 1880 cm, need not be spliced.



Method 2: The cylinder is fabricated from plate (or plates) machined in the
flat and formed to a longitudinally split cylinder with a 180 cm radius, Each
longitudinal split line and junction of adjacent cylindrical segments, butted and
held in a fixture, is machine welded. Because of the material stock size
available, six of these cylindrical segments must be used to achieve the 1880
cm length (Figures 57 and 58).

The three Orbiter LOs designs, based on material stock sizes ( (&), and
@ respectively in Fig. 59) are:

(a) Stock size: 7.62 x 244 x 845 cm
The stiffeners on one side of the plate are integrally machined to their
designed height. The frame flanges on the opposite side of the plate are
also integrally machined. After the tank has been welded and overwrapped,
frames are riveted to the flanges.

(b} Stock size: 6,35 x 295 x §56 cm
The stiffeners on one side of the plate are integrally machined to their
designed height. After the tank has been welded and overwrapped, the
frames are bonded to the external surface.

{c) Stock size: 5.1 x 290 x 808 cm
Flanges to be used as stiffener attachment are integrally machined on one
side of the plate. Flanges to be used as frame attachments are integrally
machined on the opposite side of the plate. After welding and overwrap-
ping, stiffeners and frames are riveted to their respective flanges.

Two methods of fabrication for the above designs may be employed to construct
the LOg tank's cylindrical portion.

Method 1: Both the cylinder and cone are constructed from four full axial-
length quadrants which are welded together. It is convenient to machine the
quadrants from flat plate and then to form the developed shape with single cur-
vature, as part of a cone or cylinder as required. These segments are
machine welded in a fixture (See Figure 60), Material stock size has no effect
an this method.

Method 2: The cylinder or cone is fabricated from a plate (or plates) machined
in the flat and formed to the required radius. The ends, butted and held in a

- fixture, are machine welded. Conical and cylindrical segments are butted,
trim fitted and welded together in the weld fixture (See Figure 61). Material
stock thickness determines the number of segments required. Since 7.62 cm-
thick plates are 244 cm wide, two segments are required for both the cylinder
and the cone. The 6. 35 cm-thick plate is 295 cm wide. The cone must there-
fore be made in two pieces. The lengths of the alternatives are less than the
cylinder's circumference of 1130 cm; hence, the plates must be spliced to
form the cylinder and the cone.

The design alternatives for the zee-stiffened design, Concept 2, are confined to
the ability of forming a tank from rolled plate approximately .95 cm thick. Available
stock material in . 95 ¢m thickness is 366 cm wide and up to 2500 cm long. For the
Orbiter LH» tank cylinder, (circumference = 1130 cm, length = 1880 cm), two alter-
native fabrication methods are feasible.
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Method 1: Taking advantage of the material stock length, the sheet is rolled
and welded along the longitudinal axis using four sheets. Each of the sheets

is chem-milled leaving thickened lands at the edges and pads for blind fastener
and frame connections., Frames and stiffeners are bonded to the tank external
surface after overwrapping (See Figure 62),

Method 2: The cylinder is fabricated by rolling the sheets into cylindrical seg-
ments 360 cm in diameter. The ends, butted and held in a fixture, are ma-
chine welded. Segments of 366 ¢cm maximum are formed and, by butt welding
six together, the 1880 cm length is achieved. Frames and stiffeners are at-
tached after overwrapping. Chem-milling operations are identical with
Method 1 (See Figure 63). It should be noted that the total weld length for both
methods is approximately equal.

Method 1): 1880 x 4 = 7520 cm
Method 2): 1130 x5 + 1880 = 7530 cm

For the LO5 Orbiter tank the second alternative would be the most logical to use.
Both the cylinder and the cone length are less than 366 cm, and the circumferences
are within the 2500 cm stock length (See Figure 64).

For Concept 3, integrally stiffened/internal ring design, uninterrupted wrapping
of the outside is possible. Clips used for TPS attachment are bonded and mechanically
fastened at the ring location on the outside and contained by the overwrap., Two alter-
native designs are available for the LHg and LOg Orhiter tank cylinders, Theyare
identical with alternatives 1b and lc. (See Figure 34 and , 59 (B) and

© .) Two alternative methods of construction are identical with Concept 1, (Ex-
ternal rings, (See Figures 55-58, 60, 61).

For the reinforced stiffener design, Concept 4, the cylindrical portion of the
LHo orbiter tank is made by machining stock material 2.54 x 366 x 1880 c¢m in the
flat (see Figure 55) and rolling and welding four pieces as shown in Figure 56. An
alternative method is to machine in the flat and roll the plates into complete but split
cylindrical segments (see Figure 57). Six complete cylindrical segments are welded
to make up the 1880 cm length (see Figure 58). In both methods, the flanges for
rings and stiffeners are machined on one side of the plate and, when rolled, they
appear oh the outside of the tank, Boron-reinforced aluminum sheet sections are
then riveted to these flanges., The method of machining and rolling the plates in the
transverse direction is most advantageous for the cylinder and cone of the Orbiter
LO, tank. Both cylinder and cone length are less than the 366 cm stock width.

For the honeycomb design, Concept 5, three alternative methods of construc-
tion are available (see Figures 65, 66 and 67) based primarily on the size of
existing autoclaves.

Method 1: The largest autoclave required would accommodate a full vessel
92300 cm long x 380 cm in diameter for the Orbiter LIy tank or 3650 cm long
and 1000 cm in diameter for the booster LHp tank. The vessel's metal parts
could be assembled either as girth welded circular cylinders 366 cm long and
380 or 1000 ¢m in diameter, or from formed circular segments of appropriate
corresponding radius and full axial length, their arc length being equal to or
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less than 366 em. The resulting vessel, shown in Fig, 65, would be pres-
surized (with sealing closures retained mechanically by longitudinal struts
to avoid applying axial load on the cylinder) to round and stabilize its shape.
The honeycomb core would be adhesively bonded and then external metal
skin bonded to the core.

Method 2: Suppose an autoclave to be available which can accommodate a 366
cm long by 380 cm diameter Orbiter tank (or 1000 cm diameter Booster tank).
A convenient cylinder length would be seven times the ring frame spacing of
50.8 cm, or 350.6 cm. Such a cylinder would be converted to a sandwich con-
struction exactly as in Method 1. However, girth joints would be required
between cylinders, as shown in Fig. 66. :

Method 3: Suppose the use of a long shallow autoclave, 3600 cm long for the
Booster and 2300 cm long for the Orbiter. To make the Orbiter, the vessel
would be made from quadrants whose envelope is 2300 ¢cm x 270 cm X 56 cm,
For the Booster, the envelope would be 3600 cm x 342 cm x 30 cm, Nine such
segments would be required per tank, The unspliced 2500 cm length of sheet
(366 cm wide) would suffice for the Orbiter tanks; a longitudinal splice would
be required to achieve the 3600 cm length of the Booster. The honeycomb core
would be adhesively bonded and then the outer metal face would be bonded. The
splice details are shown in Fig. 67.

The corrugation-stiffened tank design, Concept 6, with ring frames spaced at
ten inch intervals along the cylinder, is shown in Figure 68. For the LHp orbiter
tank (1880 cm long) cylinder, sheets of . 127 cm 2219-T87 material must be corrugated
in the longitudinal direction. Assuming a sheet to be 366 cm wide and 1880 cm long,
and that facilities for brake-forming a sheet this long exist, an efficient use of the
material is achieved with a corrugated circumference of 178 cm. Efficient material
_use can be shown with the help of the figure below.

o N

—— B£.34

Thus, each 6.34 cm-long corrugation requires 12.68 cm of sheet. A sheet
width of 366 cm provides 366/12. 68 = 28 corrugations and the circumferential length
provided is therefore 6.34 x 28 = 178 cm. Seven sections 178 cm long are reguired
to provide a 1130 cm circumference, The sheets are held in a fixture and welded
longitudinally. At the ends of the sheet, the corrugations must have a transition
down to a monocoque cylinder, in order to facilitate welding. To keep this region
from buckling, a sandwich stiffening system is desirable. The end domes, also of
sandwich construction, are welded to the transition region. Should the capacity
of the brake-forming facilities be less than 1880 e¢m, additional sandwich-s iffened
transitions will be required at each weld. (See Figure 68, Section A-A). At 25.4
cm frame intervals, the external corrugations are filled with densified honeycomb
core, with each segment having a bonded Delron-type fastener. Segmented frames
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are assembled on the cylinder over the core and counter-sunk screws are installed.
A mandrel is installed inside the tank either for the full tank length or locally at
each frame location. The contacting flange of the frame is overwrapped, using S-
glass filament. Affer overwrapping, the entire tank with the honeycomb transitions
is cured.

As an alternative method of forming the corrugation transition to a cylinder,
the ends of the corrugations may be cut and welded as shown in Figure 69. Addi-
tional ring frames may be added at the weld and transition area to provide the re-
quired structural properties formerly obtained with a honeycomb splice.

Estimated Costs

Costs for the baseline design and the study concepts for the Orbiter are given
in terms of dollars per square meter. These costs are based on fabricating seven
tanks, one qualification test item and six production tanks, with delivery dates rang-
ing over an eight-year period.

Recurring and non-recurring costs for the baseline design and Concepts 1
through 4 are shown in Table 49. Costs for Concept 5 are not shown due to the
miueh higher fabrication costs for the sandwich construction. Compared to ring
stringer tank construction, sandwich construction tooling is 2-1/2 time more costly,
recurring labor costs are 60% higher and material costs {for an equal weight per
sguare meter) are 50% higher. Concept 6 weights are consistently among the highest
weights and construction costs are high compared to ring-stringer construction.
Aluminum sheets could be formed into the required corrugated pattern by brake-
forming; however, forming sheets 1880 cm long repeately with tolerable accuracy
is beyond the present capability of manufacturing facilities. Transitions from
corrugations to a cylinder must be made to provide welding lands for cylinder seg-
ment and end dome joining. Difficulties encountered in forming the transition by
simply deforming the material led to the consideration of the cutting, forming and
welding alternative shown in Figure A-21. However, the cost of tooling to support
the welding process was such to make the concept incapable of competing with the
other contenders. Hence, costs for Concept 6 are now shown in Table 49.

RESULTS

Table 50 is 2 summary of unit weights for the baseline and six study concepts.
Values shown for the overwrapped concepts are minimum weight PRD and S-glass
designs from Tables 41 through 44, with prestresses limited to the recommended
maximum values given in the tables. At stations 3000 and 3560, the longitudinal
loadings predominate. Hence, the analyses indicate that overwrapping is not effi-
cient. For Concept 4, analyses were not performed at stations 1333 and 1650,
since the low longitudinal loadings render the concept inapplicable.

Table 51 is a summary of average tank unit weights and costs. Tank unit
weights were determined by averaging station weights of Table 50. Tank unit costs
are average values for different fabrication alternatives shown in Table 43. As
noted, only Orbiter tankage costs were computed. In addition, detailed costs for
Concepts 5 and 6 were not computed since they were estimated, at the outset, to be
significantly higher than the baseline cost. Table 51 indicates that for three ouc of
four tanks, weight savings from 5 - 30% can be achieved with filament overwrapped
designs. The total weight saving due to filament wrapping could be 1320 kg for the
Booster and 430 kg for the Orbiter. Sandwich construction is the lightest design for
the orbiter LHg tank, due to the high longitudinal loadings. Concepts 2 and 4 show

significant cost savings (15 - 30%) over the baseline,
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CONCEPT 4 — NO OVERWRAP

Fig. 51 Six Design Concepts {Sheet 2 of 3)
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Fig. 51 Six Design Concepts {Sheet 3 of 3)
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Fig. 52 Boron-Aluminum Applications
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REINFORCED ALUMINUM PANEL

BORON COMPOSITE (30 LAYERS)

127em 7075-T6 ANGLE
2.54cm

AL

.102cm 7075-T6 SKIN

DETAIL A
10.18cm —

DESIGN LOAD: 14,000 N/cm

REINFORCED TITANIUM PANEL

2. 78T ]

1.91cm
BORON COMPOSITE {20 LAYERS)

127em Ti-BAl 4V

2.78cm

S
S S
. ——

102cm Ti -BAI -4V

1 ‘

DESIGN LOAD: 14,000 N/cm

DETAIL B
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-

B

Fig. 53 Composite Reinforced Test Panels
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NOTE: ALL DIMENSIONS IN CENTIMETERS.

Fig. 54 AMHernative Machining Methods For Concept 1, Orbiter LH; Tank
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123!

6.35 CM, MAXIMUM THICKNESS (@)

(4 REQ'DY

NOTE: ALL DIMENSIONS IN CENTIMETERS

Fig. 55 Cylindrical Segment Machined as Flat Plate for Concapt 1, Orbiter LH,; Tank



Fig. 56 Plates Rolted and Longitudinally Welded for Concept 1, Orbiter LH; Tank
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SECT A-A

Fig. 58 Plates Rolled into Cylinders, Girth-Welded for Concept 1, Orbiter LH; Tank
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NOTE: ALL DIMENSIONS IN CENTIMETERS

Fig. 59 Alternative Machining Methods For Concept 1, Orbiter LO, Tank
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Fig. 61 Developable Surfaces Premachined in Flat for Concept 1, Orbiter LO, Tank
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WELDING LAND

FASTENER PAD

FRAME LAND

CHEM-MILLING DETAIL

Fig. 62 Plates Rolled and Welded Longitudinally for Concept 2, Orbiter LH; Tank
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CHEM-MILLING
DETAIL

WELDING LAND FASTENER PAD

WELDING LAND FASTEMNER PAD

T

SECTION A-A

‘ EXTERNAL FRAME
FRAME LAND & STIFFENER BONDED
& FASTENED MECHANICALLY

Fig. 63 Plates Rolled, Chem-Milied and Welded for Concept 2, Orbiter LH; Tank
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Fig. 64 Plates Rolled, Chem-Milled and Welded for Concept 2, Orbiter .0, Tank

HONEYCOMB CORE
& FACE SHEET BONDED
TO INNER VESSEL

)) i

SPLICE PLATE ATTACHED

WITH BOLTS & DELRON
ROLLED SH EETS CHEM-MILLED & FASTENERS

BUTT WELDED

Fig. 65 Sandwich Construction, Method #1 for Concept 5, Orbiter LH, Tank
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SPLICE PLATES ATTACHED

HONEYCOMB CORE WITH BOLTS & DELRON
& FACE SHEET BONDED FASTENERS
TO SEGMENT

NCORE FILLER

ROLLED SHEET, CHEM-MILLED &
: WELD JOINING
BUTT WELDED SEGMENTS

Fig. 66 Sandwich Construction, Method #2 for Concept 5, Orhiter LH, Tank

HONEYCOMB CORE & . SPLICE PLATE ATTACHED
FACE SHEET BONDED WITH BOLTS & DELRON
TO SEGMENT - FASTEMERS
-~
/
/
ORI S AAC S ur a6, |
i
\
\\
CORE FILLER

WELD JOINING

SHEET ROLLED IN SEGMENTS
THE LONGITUDINAL
DIRECTION, CHEM-MILLED

Fig. 67 Sandwich Construction, Method #3 for Concept 5, Orbiter LH; Tank
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HONEYCOMB TRANSITION SPLICE

J r I [ I

Y

SECTION A-A

DENSIFIED CORE

MECHANICAL FASTENER,

FIBER WRAP CORRUGATION TRANSITION

FRAME 8 CORRUGATION DETAIL

Fig. 68 Concept 6, Corrugated Sheet and Ring Frames
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FLAT PATTERN

Fig. 69 Alternative Corrugation Transition
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Table 37 — Orbiter LO; Tank, Limit Design L.oading

System
Orbiter Tank Case | Temp Pregsure **
Station | Radius N/en® No » Wfem | Ny, Wea
cm cm %k Max. [ Min. Max Bottom Top
1333 165 1 88 33.8 | 29.0 7190 2800 -
2 88 33.8 | 29.0 5610 3420
3 88 | 33.8 | 29.0 5610 - 3850
)3 319 13.8 | 10.3 566 -526 -
1650 180 1 88 33.8 | 29.0 9810 3070 -
2 88 33.8 | 29.0 6130 3850
3 88 33.8 | 29.0 6130 - 5260
4 319 13.8 | 10.3 6a2 -1050 -

Case 1 FEnd Boost
2 Max, + Q¢

3 Max.

L

- qd
o Pt Landing

* L02 Tank has internal insultation limiting wall temperature,

*¥% Including Hydrostatic pressure.

Table 38 — Orbiter LH, Tank, Limit Design Loading

System
Orbiter Tank Cagse | Temp Pressure
Station | Radius o N/cm2 e > Nfem N N/em

cm i) K Max, | Min, Max. Bottom Top
2260 180 1 88 26.9 | 22,1 | k4910 -3050 2280
4 319 13.8 | 10.3 613 -3330 3330
3000 180 1 88 26.9 | 22.1 5090 -5310 Lo30
=) 88 26.9 { 22.1 4790 -6190 7270
3 88 26.9 | 22.1 L790 Lolo | -2980
4 319 10.3 | 10.3 613 -5880 5790
3560 180 1 88 26.9 | 22.1 5350 7500 5540
2 a8 26.9 | 22.1 4790 -8590 9360
3 88 26.9 | 22.1 4790 4380 | -2310
4 319 13.8 | 10.3 613 -3160 3160
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Table 39 — Booster LO, Tank, Limit Design Loading

System
Booster Tank Case | Temp Pressure K
Station | Redius . N/cm? Ny » Nfem Ny, N/em
¢cm cm K Max. | Min, "Max. Bottom| Top
7720 503 1 102 | 27.6 - 11380 7540 | -2630
2 111 | 17.3 - 8760 3510 | -4910
3 294 | 13.8 - 1753 -3860 3860
7870 503 1 102 | 27.6 - 12970 7670 2770
2 111 | 17.3 - 8760 3h20 | -5hkO
3 294 | 13.8 - 1753 3510

Case 1 Wind load before launch
o> Qff-nominal 3g initial boost
3 2 Pt landing spring back

*¥ T10. tenk has internal insulation limiting wall temperature.
2

#*¥ Including Hydrostatic pressure

/

Table 40 — Booster LH; Tank, Limit Design Loading

System
Booster Tank Case Temp Pressure ¥
Station | Radius ° N/eme Né ? N/cm N@’ N/cm
om cn K ‘Max. Min, Max, Bottom Top
L340 503 1 111 | 27.6 - 9110 4080 3860
5 111 | 17.3 - 8760 130 3510
3 29Lh | 13.8 - 1753 -1930 1930
5330 503 1 111 | 27.6 - 9370 3750 3330
2 111 | 17.3 - 8760 L4280 3150
3 2gL { 13.8 - 1753 ~h210 4210
6300 503 1 111 | 27.6 - 9630 3680 2840
2 111 | 17.3 - 8760 4560 3140
3 294 | 13.8 - 1753 6660 6660

Case 1 Wind load before launch
o  Off-nominal 3g initial boost
3 2 Pt landing spring beck

*  LH, tank has internal insulation limiting wall temperature.

** Tneluding Hydrostatic pressure

147



8v1

Table 41 — Concept 1 Structural Parameters: a} Orbiter LO; Tank

Orbiter Qverwrap Overyrap b t ot d tw t 7 te&‘“‘ Unit
Station Material Prestress, cm cm e om cm - Weigh‘g
en I/ cn® kg/m
FRD 69,000 30.75 .328 5.69 L0452 L1hh .226 6.24

FRD 103,400 30,75 .328 5.69 .0297 .138 .213 5.91

1333 S-Glass 51,700 46.75 .328 5.34 ,O5kh 119 .19% 5.41
S-Glass 69,000 46.75 .335 5.34 .0399 121 .188 5.22

Boron Alum ! 41,400 30.75 .328 1 5.69 . 0483 152 .257 7.08

Boron Alum | 55,200 46.75 .335 5.34 .0579 124 .216 6.00

Graphite 51,700 30.75 .328 5.69 .0549 151 .241 6.69

Graphite 69,000 30.75 .328 5.69 L0411 145 .229 6.30

Boron 41,400 30.75 .328 5.69 L0609 L1368 .251 6.98

Boron 62,100 46.75 .335 5.34 .0498 122 .206 5,71

PRD 69,000 20.80 .213 6.65 L0616 ,201 .300 8.29

FRD 103,400 20.80 213 6.65 L0406 .190 .279 7.71

1650 8-Glass 51,700 31.10 | .23% | 5.8 | .o731 | .67 | .26k 7.32
3-Glass 69,000 31.10 | .23% | 5.86 1 .09%6 164 249 6.88

Boron Alum | L1,400 £0.80 .213 6.65 | .0736 .207 346 9.56

Boron Alum | 55,200 20,80 .213 6.65 . 0554 .200 .320 8.8¢

Graphite 51,700 20,80 .213 6.65 0739 .207 318 8.78

Graphite 69,000 20.80 .213 6.65 L0554 .200 .300 8.29

Boron 41,400 20,80 .213 6.65 L0843 .188 .333 9,17

Boron 62,100 31.10 .23k 5.86 L0683 .168 274 7.56

#%* gquivalent thickness of Aluminum l l

1y |
|
-t b
|

|
) — - ]
R — 1 1
Y
]

BASED ON 50.8cm RING SPACING FOR THE ORBITER, 1 = 42.7cm* | A = 4 24cm?,
WITH 60.9cm SPACING FOR THE BOOSTER, | = 606cm* | A = 14.3cm?



6%T

Table 41 (Continued) b) Orbiter LH,; Tank

Orbiter Overwrap Overwrap b t " a t t ¢ t Unit
Station | Material | Prestress, | cm 8 cm W €qd Weight
o cm cm 6401 Cm o
N/cm kg/m
PRD 69,000 13.50 b2g 3.71 .030 .108 2l 6.69
PRD 1033400 13.03 429 3.81 027 099 .236 6.54
2260 S-Glass 51,700 13.03 Li2g 3.81 L0400 .099 249 6.88
8-Glass 69,000 13.03 29 3.81 .026 .099 241 6.69
Boron Alum { 41,400 13.03 429 3.81 066 .099 .287 7.91
Boron Alum | 55,200 "13.03 | k29 | 3.81 | .O45 099 | .264 7.32
Graphite 51,700 13,03 ik 3.68 .048 A1k .258 7.I7
Graphite 69,000 13.03 Lk 3.68 .032 114 .2kg 6.88
. Boron 41,400 13,03 429 3.81 .075 .099 .279 7.71
Boron 62,100 13.03 29 3.81 .040 .099 .253 6.88
FRD 69,000 8,9 429 3.78 .005 .170 .353 9.7
PRD 103,400 T | .002 ) .352 g.72
3000 S-Gless 51,700 .005 .355 10.00
S-Glass 69,000 .005 .355 9.76
Boron Alum | 41,400 .010 360 | 10.1%4
Boron Alum | 55,200 .007 .356 9.86
Graphite 51,700 012 .356 9.86
Graphite 69,000 ‘ .007 .355 9.8
Boron 41,400 ] ' .012 Y .359 9.96
Boron 62,100 8.9 A2g 3.78 .007 170 356 9.86
PRD 69,000 8.13 L7 3.94 A1l .203 19 11.60
103,400 A | Metal A i
3560 S-Glass 51,700 Design
69,000
Boron Alum | 41,400
55,200
Graphite 51,700
69,000
Boron 41,400 i 1 1 L ¥
62,100 8,13 b7 3.94 203 419 11,60
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Table 41 (Continued) ¢} Booster LH; Tank

Booster Overwrap Overwrap b t % a t t t Unit
Station | Material Prestress, cm 8 cm il . ed Weight
om o cm cm cm cm o
N/cm kg/m
FRD 69,000 20,17 .285 3.43 .0582 .188 .265 7.32
PRD 103,400 20.17 .285 3.43 .0394 175 .248 6.88
4340 S-Glass 51,700 16,32 .292 3.33 L0716 45 .260 7.22
S-Glass 69,000 16.32 .292 3.33 0539 149 248 6.88
Boron Alum | 41,400 17.70 .302 3,48 .0811 .168 .305 8.4k
Boron Alum | 55,200 16.32 292 3.33 .0828 .1hk2 .279 7.71
Graphite 51,700 18.65 .285 3.43 .07 .188 277 7.66
Graphite 69,000 20.16 .285 3.43 .057h .178 .257 7.07
Boron 41,400 17.70 .302 3.40 .1092 152 .308 8.49
Boron 62,100 17.70 302 3.40 L0661 152 269 7.46
FRD 69,000 6.43 22h 3.10 .059% .193 .328 9.08
FRD 103,400 6.61 .259 3.09 L0394 .178 .318 8.79
5330 S-Glass 51,700 11,42 L27 3.81 .0731 .150 345 9.56
S-Glass 69,000 1.2 | W7 | 3.81 | L0552 | 152 | .335 9.28
Boron Alum | h1,400 8.Lo .328 3.32 | .0866 168 1,378 10.50 |
Boron Alum | 55,200 11.hk2 Lol | 3.81 . 0850 46 1 .368 | 10.30
Graphite 51,700 6.43 .22k 3.10 L0741 J191 ¢+ L340 9.43
Graphite 69,000 6.43 .22k 3.10 L0556 .18 L3295 8.98
Boron 41,400 1.k | Jwe7 | 3.81 | ,1117 | .154 ! .39% | 11.00 !
Boron 62,100 1142 | 427 | 3.81 ¢ L0673 | .156 | .358 9.90 |
PRD 69,000 6.12 .318 3.58 L0607 .198 L4130 1llhe
FRD 103,400 7.39 401 ¢ 3.81 L0412 .133 407 11,22
6300 S-Glass 51,700 7.72 iy 4,14 L0750 .156 pnn 12,29 i
S-Glass 69,000 7.72 el b1y L0564 .156 Aize 11.04
Boron Alum | 41,400 7.39 Lol 3.81 .0848 176 A6h | 12,83
Boron Alum | 55,200 7.39 4ol 4,14 L0635 176 Lo 12.19
Graphite 51,700 6.12 ,318 3.58 L0775 .197 et 11.80
Graphite 69,000 6.12 .318 3.58 L0775 .193 Rit=xl 11.66
Boron 41,400 7.72 Sl 4,14 L1hk .159 .501 13.80
Boron 62,100 7.72 Ly 4,14 L0704 .159 L6z 12.83




Table 41 (Continued) d) Booster LO; Tank

Booster Overwrap Cverwrap b t st d tw t 1y teq

Stz;:.on Material Pr'e strg S8, et om em om om om
N/cm

FRD 69,000 15.98 .635 3.68 L0722 .234 1416

PRD 103,400 15,7k .635 4,06 .0559 .209 401

7720 S-Glass 51,700 12.71 A3e L.06 .0889 .186 .389

S-Glass 69,000 12,71 A32 4,06 L0671 .186 .373

Boron Alum | 41,400 15.98 635 3.68 0912 .219 452

Boron Alum | 55,200 12.71 A32 4,06 . 0980 .183 L1k

Graphite 51,700 15,98 635 3.68 L0922 234 431

Graphite 69,000 15,98 635 3.68 .0561 221 .399

. Boron 43,400 12,71 A32 L 4,06 1362 .188 g

i Boron 62,100 12,71 A32 4,06 .0838 L188 | Lboi

PRD 69,000 10.32 JTHTL S T T 1% .0822 .266 487

PRD 103,400 8.94 Lo | hoor .0559 2 482

7870 S-Glass 51,700 8.61 457 3.94 .1013 .211 .hg3

S-Glass 69,000 8.61 L57 3.94 L0732 216 A7

Boron Alum | 41,400 8.94 L69 L,01 L1148 .238 .561

Boron Alum | 55,200 8.38 L5 3.94 .1118 .208 .528

Graphite 51,700 10.32 Jh7 o 4,16 L1052 266 .506

Graphite 69,000 10.32 A7 4.16 L0732 .26k 1485

Boron 431,400 8.61 60 3.9 1552 .213 .564

Boron 62,100 8.61 460 3.96 .0955 213 .511

1ST




Tahle 42 — Concept 1, Orbiter Tanks, Wrap Stresses at P = OGand T = 88°K

Overwrap Tank | Orbiter | Overwrap t t f T

Material Station { Prestress c‘gl c; £ 5 w 5
cm N/cme N/cm N/em

Boron Lo, 1333 41,400 .137 | 0614 | 6730 -1h4,480

Lo, 1333 62,100 122 | .ok97 | 6730 - 5,380

Lo, 1650 41,400 .189 | .0843 | 6730 | -15,100

L0, 1650 . 62,100 168 | L0683 | 6730 - 5,380

LH, 2260P 62,100 292 | 0990 | 6730 | -58,600

LH, 2260t *| 62,100 .083 | .0340 | 6730 | - 5,380

LH, 3000 62,100 .292 | .0990 | 6730 - 5,860

LH,, 3560 62,100 .262 | L0990 | 6730 - 5,860

LH, 3560 62,100 292 | L0990 | 6730 - 5,80

Boron Alum | L0, 1333 41,400 .150 | .0kB82 | 6420 -19,600

L0, 1333 55,200 .122 | L0579 | LBoO -10,480

L0, 1650 41,400 207 | L0665 | 8700 -13,270

L0, 1650 55,200 270 | 079k | LBOO -10,480

Graphite LO, 1333 51,700 .150 | L0548 | 1869 - 5,380

L0, 1650 51,700 .207 | 0739 | 1860 - 5,380

LH, A1l 51,700 .338 | .1092 - - 5,520

¥ Thne symbels b and t mean top and bottom points of cross-section
at that station.

C
L
I Lo ]

Ly

i52

L

..
|

b

E'

4
k

BASED ON 50.8c¢m RING SPACING FOR THE ORBITER, | =42.7em*, A = 4.24cm?,
WITH 60.9cm SPACING FOR THE BOOSTER, | = 606cm®, A = 14.3cm?
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Table 43 — Concept 2 Structural Parameters a) Orbiter LO, Tank

Orbiter | Overwrap | Overwrap b ta. tst t ¢ be. bst bf tw t Y, teq UI-lit
Stzzlon Material Prestrgss cm om om om om om om om om om Welgh;
N/cm kg/m
1333 PRD 69,000 Lh.20 |.284% {.237 |.346 [3.50 | 4.28 j1.41 |, 0453 | 243} .21 5.81
FRD 103,400 | Lh.20 |,284 1,137 [.346 {3.50 | 4.28 |1.41 | .0330 | .13} .200 5.51
S=(lass 51,700 4h.80 ,.euh .109 |.325 |3.98 | 3.50 [1.10 | ,0543 | .119| .196 5.41
8-Glass 69,000 44,80 | .24k [.209 |.325 |3.98 | 3.50 {1.20 | .0k09 | .119| .188 5.22
1650 FRD 69,000 39.50 |.304 |.188 |.353 |3.54 | 5.55 |1.96 | .0622 | .201 | .300 8.29
FRD 103,400 | 39.50 |.304 |.188 |[.353 {3.54]5.55 [1.96 .ohoT .201 | .290 8.00
s-Glass | 51,700 | b1,ho |.282 |.157 |.341 {3.65 [4.68 [1.61 |.0721 | .168 | .274 | 7.61
S-Glass 69,000 | 41.h0 |,282 |.157 [.341 |3.65 | 4.68 [1.61 |.0539 | .168 | .262 7.22

b} Orbiter LH, Tank

2260 FRD 69,000 20,25 |.345 {.191 1.353 |3.62 | 4.53 |1.69 | .0k06 | .1he |.279 7.7
PRD 103,400 20,25 | .345 |.191 |.353 [3.62 | 4.53 [1.69 |.0203 | .lh2 ! .269 7.46
S-Glass 51,700 22.25 | ,3%5 |.191 {.353 [3.62 | 4.53 [1.69 |.0279 | .1k2 |.279 7.71
S-Class 69,000 22,25 | .3%5 1,191 |.353 |3.62 | 4,53 |1.69 |.0203 | .1k2 | .274 7.61
3000 PRD 69,000 16.74 | .338 |.251 {.351 |3.22 | 5.41 |2.22 1 A1l 204 | 406 | 11.27
FRD 103,400 16,74 |.338 |.251 |.350 [3.22 | 5.41 |2.22 | Metal | .224 |.,hW06 | 11.27
S-Gless 51,700 16,74 |.338 |.251 |.351 |3.22 | 5.41 |2.22 | Design| .22k | ,HO6 | 11.27
S-Glass 69,000 16.7% |.338 |.251 1.351 [3.22 | 5.41 2,22 - 22k 1L hos | 11,27
3560 PFRD 69,000 13.37 | .330 |.236 |.366 |3.32(5.16 {1.87 | A1l 285 | 498 | 13.76
FRD 103,400 13,37 | .330 |.236 |.366 |3.32]5.16 |1.87 [Meta) | .285 |.498 | 13.76
S-Glass 51,700 13,37 |.330 |.236 |.366 |3.32 |5.16 {1.87 | Desien| .285 |.498 | 13.76
S-Glass 69,000 13.37 |.330 |.236 |.366 |3.32[5.16 |1.87 - .285 | .4o8 | 13.76

:IF’—“

| e




PET

Table 43 (Continued) c) Booster LH; Tank

Booster | Overwrap | Overwrap b t t t b b b t t Unit
Station | Material | Prestress cm c; cns:lt cg c; c]flt c£ c:g zlm c_;q Weight
om 2 2
N/em kg/m

4340 FRD 69,000 35,801 .312 | .168 |.338| 2.98! 4.82{1.68 | .0549 { .193 | .287 7.9
PRD 103,400 | 32.80 |.312 | .168 |.338 2,98 | L.82 {1.68 ] .0406 | .193|.279 7.7

8-Glass 51,700 32,80 | .32 | .168 |.33812.98 | 4.82 |1.68 | .0436 | .193 | .292 8.10

S=Glass 69,000 32,80 !.312 | .168 |.338 | 2.98 | 4.82 |1.68 | .0406 } .193 | .290 8,01

5330 PRD 69,000 14.50 | .328 | .191 [.330]3.15 | 4.9 |1.76 | .0620 | .196 | .386 | 10.69
FRD 103,400 14,50 | .328 | .191 }.330 [3.15 | kb9 | 1.76 | .0bh1 | .186 | .368 | 10.20

S-Glass 51,700 14.50 | .328 | .191 |.330 | 3.15 | L.bo 11,76 | L0714 | L1631} .373 | 10.29

S-Glass 69,000 14.50 1.328 | .191 |.330 | 3.15 [4.49 11.76 | .0526 | .163 | .31 | 10.00

6300 PRD 69,000 11.00 {.322 | ,193 {.322 {3.11 {4.4h4 | 1.61 |.0330 | .239 | .462 | 12.73
FRD 103,400 11.00 |.322 | .193 |.322 [3.11 {4, b4 | 2.61 | .0330 | .239{ .k62 | 12.73
S-Glass 51,700 11.00 |.322 | .193 |.322 | 3.11 [ 4.44% | 1.61 |.0330 | .239 | .467 | 13.18

8-Glass 69,000 11.00 |.322 | .193 {.322 | 3.21 | .4k j1.61 |.0330 | .239 | .L467 | 13.18

d) Booster LO; Tank

7720 FRD 69,000 17.07 {.335 | .219 1.361 |2.93 |4.90 {1.96 |.0609 | .2k9 | .431 | 11.96
FRD 103,400 18.23 |.348 | .23% |.373 [3.20 |5.50 [1.99 | .ok77 | .2bl | .b27 | 11.96
S-Glass 51,700 18,50 1.350 | .239 |.376 |3.30 |5.36 |2.22 {.0584 | .234 | .44k | 12,30
S-Glass 69,000 18.50 |.350 | .239 }.376 |3.30 |5.36 [2.22 |,0502 | .234 | .439 | 12.1k
7870 FRD 69,000 17.07 |.338 | .216 }.363 |2.70 {4.76 |1.98 [.0736 | .279 | .6k | 12.83
FRD 103,400 18.78 [.358 | .24k |.381 {3.11 !5.55 |1.93 |.0574 | .277 | W67 | 12.93
S-Glass 51,700 17.97 |.356 | .236 |.366 |3.34 |{5.46 |2.05 [.0691 | .262 | .480 | 13.27

S-Glass 69,000 17.97 |.356 | .236 |.366 [3.34 [5.46 [2.05 |.0622 | .262 | 478 | 13.22




Table 44 Concept 3 Structural Parameters: a) Orbiter LO; Tank

Orbiter Overwrap Overwrap b t £ d t ty t
Station Material Prestress cm S cm v €4
om o cm cm cm cm
N/em
1333 PRD 69,000 30.75 .328 5.59 .0hs52 LA .26 6.24
FRD 103,400 30.75 .328 5.59 .0297 139 .21L 5.91
S-Glass 51,700 46.75 .328 5.34 .054} .120 .196 5.41
S-Glass 69,000 46,75 .335 5.3k .0399 120 .188 5.22
1650 FRD 69,000 20.77 .213 6.66 L0617 .201 .300 8.29
PRD 103,400 20.77 .213 6.66 .OL06 .189 279 7.76
S-Gless 51,700 31.13 234 5.87 L0732 167 .26k 7.32
S-Glass 69,000 31.13 .234 5.87 . 0556 .164 .249 6.88
b} Orbiter LH, Tank
2260 FRD 69,000 13.52 A29 3.71 .0300 .108 241 6.69
FRD 103,400 13.03 L29 3.81 .0281 .099 .236 6.54
- 8-(lass 51,700 13,03 29 3.81 .039% .099 .249 6.88
S-Glass 69,000 13.03 4eg 3.81 .0258 .099 .2h1 6.69
3000 FRD 69,000 8.96 429 3.78 .0052 .169 «353 9.75
FRD 103,400 8.9 429 3.78 .0021 169 .352 9.71
§-Glass 51,700 8.96 429 3.78 .0052 .169 357 9.80
S-Glass 69,000 8.96 429 3.78 . 0048 .169 .357 9.80
3560 PRD 69,000 8.13 L6 3.94 All .203 J19 11.61
FPRD 103,400 8.13 L6 3.94 Metal .203 419 11.61
S-Glass 51,700 8.13 L6 3.94% | Design .203 g 11.61
S-Glass 69,000 8.13 L6 3.94 .203 19 11,61

g6l
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Table 44 (Continued} c} Booster LH; Tank

Booster Overwrap Overwrap b t t d t t g L Unit
Station Material Prestress cm s w eqd Weight
om o cm cm CH cm o
N/em kg/m

4340 FRD 69,000 20.17 .28L 3.43 | 0582 .188 265 7.32
FRD 103,400 20,17 284 3.43 L0394 175 .248 6.88

S-Glass 51,700 16.32 .202 3.33 L0716 145 260 7.22

S-Glass 69,000 16.32 .292 3.33 .0539 149 .248 £.88

5330 FRD 69,000 11.43 LA426 3.81 L0668 .191 .366 10.10
PRD 103,400 11.43 426 3.81 . 039L 178 .338 9.32

S-Glass 51,700 11.43 b26 3.81 L0607 .178 .363 10.05

S-Glass 69,000 11,43 L2 3.81 ol83 .178 .356 9.85

6300 FRD 69,000 11.08 A32 4,06 0668 .191 L0 12.97
PRD 103,400 11.08 432 4.06 .0k78 191 60 12,74

5-Glass 51,700 11.08 432 L.06 .0529 .191 475 13.13

S-Glass 69,000 11.08 432 4,06 .0L78 .191 L7e 12,84

d) Booster L.OQ, Tank

7720 FRD 69,000 16,00 635 3.68 0722 .234 116 11.52
FRD 103,400 15.76 .635 h.06 0559 L2131 L40L 11.08

S-Glass 51,700 12.71 4132 L, 06 ,0722 211 401 11.08

S-Glass 69,000 12.71 b3z 4.06 .0589 211 .391 10.79

7870 FRD 69,000 10.32 R h,16 .0823 . 266 488 13.52
FRD 103,400 8.94 AT0 4,01 .0559 .24 82 13.32

S-Glass 51,700 8.61 L57 3.94 .1013 L211 Joz 13.61

S-Glass £9,000 8.61 57 3.94 L0731 216 478 13.17




Table 45 — Concept 4 Structural Parameters

a) Orbiter LH, Tank

Station b t t t b- b b t t t Unit
a st il a st f b L eq .
cm cn cm cm cm cm cm om cm cin cm We:Lghg
kg/m
2060 29.85 .31 231 .231 3.36 5.07 1.90 .0508 .208 .295 8.1
3000 . 16.75 .338 .251 .251 3.22 5.31 2.22 L0356 .223 .396 10.97
3560 13.38 .331 .23 .236 3.31 5.04 1.87 .0L83 .284 485 13.L2
b} Booster LH, Tank
L4340 30.65 .297 .190 .190 3.55 5.48 1.93 .0559 277 .35 9.84
5330 27.10 .328 .231 .231 3.34 5.41 1.99 .0483 .285 .386 10.68
6300 19.62 | .346 | .2b9 | 249 | 3.08 | 5.53 | 2.43 | .0u06 | .332 | .485 | 13.ke
cll Booster LO, Tank
7720 26.60 .328 246 246 3.48 5.31 2,03 .0L58 .351 L57 12.63
7870 27.50 | .335 | .249 | .249 [ 3.36 | 5.78 [ 2.10 .04B3 |} .391 | .500 | 13.80

LGT

BORON-EPOXY NARMCO — 5505
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a) Orhiter LO; Tank

Tabie 46 — Concept 5 Structural Parameters, a) Orbiter LO, Tank

Station Facing (1) core (2) General Panel Unit (3)
cm Thickness Depth Instability Instability Weight
cm cm Nem, N/em Nem, N/em e 2
g/m
1333 .221 0 980 1,180 6.10
1650 .310 0 1,760 2,120 8.58
b} Orbiter LH; Tank
2260 0.955 (&) 5.380 6,780 6.05
3000 .125 1.078 (5) 10,600 14,300 8.58
3560 .160 1.078 (6) 14,110 18,460 10.48
c) Booster LH, Tank
4340 .135 1.000 (7) 3,580 4 ,Loo 9.17
5330 .137 1.757 (5) 6,960 13,930 9.71
6300 47 2.625 (8) 10,620 l, 140 10.48
d) Booster LO, Tank
7720 .165 1.904 (9) 10,000 11,170 11.L2
7870 .188 1.860 (9) 11,070 12,470 12.63
(1) Equal Thickness 2219-T87 Alumirum Alloy Face Sheéts. (6) 60% 2.8 Density, 40% 5.0 Density.
(2) 2024-T81 Aluminum Alloy Honeycome Core. (7) 33% 2.8 Density, 67% 5.0 Density
(3) Includes Faces, Core, and Adhesive Bond. (8) 83% 2.8 Density, 17% 3.5 Density.
Eug 30% 2.8 Density, 70% 5.0 Density. (9) Y429 2,8 Density, 58% 5.0 Density
5

. 50% 2.8 Density, 50% 5.0 Density.



68T

Table 47 — Concept 6 Structural Paramaters

a) Orbiter LO; Tank

Station b 1 t b b, t t t t Unit

W f g W wrap eq .
cm cm cm cm om om om em om om We:l.gh;
: kg/m

1333 .90k 1.908 .102 5.64 2.37 26k .211 257 R 12,50

1650 1.095 2.150 1L 6.58 2.77 .308 246 275 .531 14.88
b} Orbiter LH,; Tank

2260 1.397 | 2.610 | .102 | .67 | 1.96 | .219 | .175 | .e12 .371 | 10.38

3000 2,0h0 3.120 L7 L, 75 2.00 224 .178 .215 .45k 12,74

3560 3.070 L.070 .193 h.88 2.05 .229 .183 _.221 534 14,97
¢) Booster LH, Tan

4340 .937 1.948 L102 6.99 2.95 .328 262 .34 495 13.90

5330 .958 1.983 104 7.06 2,97 .330 264 .319 .506 14.20

6300 3,750 4,080 .188 7.14 3.00 333 267 .325 .597 16.73
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Table 47 (Continued) — Concept 6 Structural Parameters

d) Booster LO; Tank

Station b

cm

bw bf tf tw
om cm cm cm

~

t
cn cm eis]

wrap

t
€q

Unit
Weight

kg/m

7720
7870

2.640
2,710

.279
.310

1.517
1.540

Lo | 746 ¢ 3.2 350
A2 | 8,28 | 3.48 | .389

339
. 378

.589
.663

16,54
18.59

NOTE :

Includes hydrostatic pressure.

Based on 25.4 em ring spaceing for the orbiter
and 30.5 em ring spacing for the booster.

No flight loads were included in ring sizing.

Weight of local reinforcement of honeycomb and
bond at ring-corugation intersection not included.

local bending of ring flanges by corrugations not included.

Weight of corrugation to corugation or corrugation to end
dome splices not included.

Rings overwrapped with S-Glass at 69,000 N/cme.

, s

CORRUGATED WALL

-

N |

lad

-‘—tw

RING CROSS SECTION

twrm:l

4

mmgT




Table 48 Uniaxial Filament-Wound Composite Material Properties for Use in Parametric Study of Filament

Overwrapped Tanks

BORON/ HTS GRAPHITE/
PROPERTY EPOXY EPOXY
FILAMENT
ULTIMATE STRENGTH, Nfcm? 276,000 241,000
ELASTIC MODULUS, Nfcm? 40 X 10° 24 X 10°
DENSITY, g/cm? 2.60 1.80
COMPOSITE
FILAMENT FRACTION IN COMPOSITE, VOL % 55 60
DENSITY, g/cm® 199 1.49
LONGITUDINAL MODULUS, Nfem?
480k 22.0 X 10° 14.5 X 10¢
287K 22.0 X 10° 145 X 10¢
78k 22.0 X 10¢ 16.8 X 10*
LONGITUDINAL TENSILE ULTIMATE STRENGTH, N/cm?
450°K 118,000 106,000
297°K 138,000 124,000
78° K 160,000 103,000
LONGITUDINAL TENSILE OPERATING STRESS!, Njem?
450° K 77,200 70,300
297K 91,700 82,700
78° K 106,900 69,000
COEFFICIENT OF THERMAL EXPANSION, u/"K
297to 78K 2,39 0.20
297 to 450° K 45 0.20
78 to 450° K - 0.20
NOTES:

{1) ASSUMED VALUE BASED ON 1.5 SAFETY FACTOR

(2} ALL OPERATING STRESSES ARE BASED ON ZERQ-STRESS TO FULL-OPERATING-STRESS CYCLIC

LOADING, WHICH IS CONSERVATIVE.

161
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Table 49 — Concept Costs

a) Orbiter LH; Tank

Concept | Overwrap Basie Tank Overwrap Total Cost™

Material Non-Recur Recur Non=-Recur Recur Non-Recur Recur T Tanks
§/n° gt | s | gt s/ | $/u°

Baseline - 8,580 1,000 - - 8,580 1,000 15,580
1a S-Class 8,570 754 8L0 i9h 9,410 g8 16,050
1s PRD 8,570 754 84o 216 9,410 970 16,200
1b&e S-Glass 8,570 754 840 19k 9,410 oh8 16,050
1b&c FRD 8,570 754 840 216 9,410 970 16,200
2 S-Glass 4,210 603 775 194 4,985 797 10,560
2 FRD 4,210 603 775 205 4,985 808 10,6kL0
3 G-Glass 8,500 75k 840 205 9,340 959 16,050

3 FRD 8,500 754 840 226 9,340 980 16,200

L - 5,590 797 - - 5,590 797 11,170

b) Orbiter LO; Tank

Baseline - 12,000 1,370 - - 12,000 1,370 21,590
lage S-Glass 12,160 1,240 1,160 258 13,320 1,498 23,810
la&c PRD 12,160 1,240 1,160 291 13,320 1,531 2L, 040

1b S-Glass 12,160 1,240 1,060 248 13,220 1,L88 23,640
1b PRD 12,160 1,240 1,060 280 13,220 1,520 23,860
2 S-Glass 11,580 570 1,030 258 12,610 828 18,410
2 FRD 11,580 570 1,030 291 12,610 861 18,640
3 5-Glass 11,470 1,640 1,150 269 12,620 1,909 25,980
3 FRD 11,470 1,640 1,150 302 12,620 1,942 26,210

¥ Non-Recur + 7x Recur




‘Table 50 — Summary of Unit Weights

Tank Station, Concept Unit Weights, kg/m2

om Ba.seline #1 #2 #3 # #5 #6
Orbiter 1O, 1333 7.91 5.22% 5.22% 5,22% - 6.10 | 12.50
Orbiter 1O, 1650 10.40 6.88% T.22% 6.88% - |:8.,58 | 14.88
Orbiter LH, 2060 7.31 6 .60%* 7.60% 6.69%* 8.14 6.05 | 10.38
Orbiter LH, 3000 9.71 9, 71¥%* 11, 07%** 9, 71¥* 10,97 8.58 | 12.7h4
Orbiter LH, 3560 11.61 12,61%x | 13, 76%* | 11,61+ | 13,42 | 10.48 | 14.97
Booster LH, L340 10.05 6.88% 7. 95 %* 6.88* 9.84 I 9.17 | 13.90
Booster LH, 5330 10,49 9, 07%% 10,00% g,84* 10,68 9,71 | 14,20
Booster LH, 6300 11,17 11.32%% | 12,74 | 12,97 | 13,42 (| 10.48 | 16.73
Booster Lo, 7720 11.81 10,30% 11,96%* 10.79% 12,63 | 12.ke | 16.54
Booster LO, 7870 13.23 13.18% 12,83%* 13.18* 13.80 | 12.63 | 18.59

£9T

*

* 7+ All metal design

S-Glass overwrap at 69,000 N/cm?
*%  FRD overwrap at 103,400 N/cm?
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Tahle 51 — Summary of Costs and Weights

Cost Weight, $/u° (7 Tanks)/kg/n°

Concept Baseline #1 #e #3 s #5 #
Tank
Orbiter gl,y EW 1y W / -
10, 9.15 6.05 6.22 6.05 - 7.34 |,713.69
orbiter 15,540 16,125 m,y 16,125 10,570 -
IH, AA 9.3k 10,88 9.3k A 8.37 49
Booster - - - - - -
L, AT 9.09 %23 9.89 {1.31 9.79 | k.4
Booster - /:;////,/’/ - - - /;;////
LO, 12,52 1.7k 12.39 /1.99 13.21 12,02 17.56
Note: Weights are average of station weights.

Costs are average of station fabrication costs.




APPENDIX B

EXPERIMENTAL EVALUATIONS - ORIGINAL PROGRAM EFFORT

SUMMARY

Experimental work was undertaken to develop data supporting the tank design eval-
uation. Areas identified as needing evaluation, and experimental plans, are summa-
rized below:

Filament-Winding Prestress Levels

Maximum reliably-achieﬁed filament-winding prestress levels limit the weight
saving by this technique. Data were developed for S-901 glass, PRD-49-III, Court-
auld's HTS graphite, and boron filaments.

Bond Strength to Resist Buckling and Effect of Debond of Overwrap

For efficient overwrapped metal tank operation, high residual filament tension
and moderate metal compression must be established during fabrication. It was pre-
sumed that metal shell buckling due to the constrictive wrap stresses would be pre-
cluded by adhesive bonding the metal shell to the overwrap. With the high shell
diameter/thickness ratios of the Shuttle low-pressure tankage, the presence of minor
imperfections could lead to buckling. Evaluations were conducted to confirm the
capability of the bond to resist buckling, using subscale overwrapped cylinders with
and without intentional debonds.

Stringer Attachment

The cost saving of using bonded-on instead of integral stiffeners is attractive. A
demonstration was conducted showing that metal stringers can be attached to the outer
surface of a composite reinforced shell by a combination of bonding and intermittent
mechanical fastening, and that this assembly is structurally effective in resisting
compressive loading.

DISCUSSION

Filament-Winding Prestress Levels

Maximum filament-winding prestress levels and tolerance levels were determined
for the candidate filament reinforcements. The breaking stress as a function of wind-
ing speed was determined from tests in triplicate. The filament winding load was ad-
justed conventionally as follows. The low-tension filament left its braked spool, slipped '
around a fixed capstan, and was taken up at a much higher tension on the winding
mandrel. By varying the braking torque at the spool, the filament tension measured
by a load cell near the winding mandrel was adjusted to the desired value. The
breaking strengths were measured at a series of about 7 winding speeds uj to about
60 m/minute. The strengths were generally higher at lower winding speeds and for
prepreg over in-process impregnated fibers.

The filamentary reinforcements evaluated were the following:
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e S-901 glass /20-end roving

- Preimpregnated with resin Fig 70 shows fiber breaking strengths
100 to 169 kN/cm?2
- Dry roving in-process im- Fig 71, for 20 ends, shows fiber breaking
pregnated with resin strengths 75 to 100 kN/cm?2

Fig 72. for 12 ends, shows fiber breaking
strengths 58 to 100 kN/cm2

e PRD - 49 - III 12~end yarn

- Preimpregnated with resin Fig 74 shows fiber breaking strengths
112 to 171 kN/em?
- Dry yarn-in process im- Fig 73 shows fiber breaking strengths
pregnated with resin 110 to 148 kN/cm

e Courtauld's HTS graphite tow

- Preimpregnated with resin Fig 75 shows fiber breaking strenglhs
54 to 90 kN/cm?

» Boron filament

Preimpregnated, 3.2 mm- Fig 76 shows fiber breaking strengths
tape of .1 mm dia filaments 52 to 262 kN/cm?2

In conclusion, the recommended values for design, shown in Table 52, are above

the minimum of the range of experimental test results, for each material. The justi-
fication for using these values and anticipating few failures during winding are two-
fold. TFirst, it is presumed that the lowest observed values were associated with the
extra handling inherent in a test program. Se cond, in production, less abusive fiber
tensioning systems would permit safe higher tensions. It is seen in Table 52 that, at
60 m/minute max winding speed, the winding tension as a percent of (RT) single cycle
design ultimate tensile strength ranges from 55% for S-901 glass and boron prepregs
to 72% for PRD-49 prepreg and 38% for HTS graphite prepreg.

Bond Strength to Resist Buckling and Effect of Dehond of Overwrap

Bond Strength to Resist Buckling ~ The Shuttle's low-pressure, cryogenic propellant
fanks have walls of high diameter-to-thickness (D/t) ratio. When weight of the tankage
is reduced by utilizing filament overwrapping of an inner high strength metal shell to
carry part of the hoop load, the metal chell's thickness is further reduced. For effi-
cient overwrapped metal tank operation, an initial prestress must be set up during
fabrication, in which the filaments are in tension and the metal in compression. In-
surance against metal shell buckling due to constrictive wrap compressive stresses

is critical for cylinders of high D/t ratio.

Work reported in References 34 and 35 established a design approach and
criteria for overwrapped metal tanks with load-bearing, non-buckling liners. Fig-
ures 77 and 78 give corresponding constrictive wrap buckling strengths for cylin-
drical metal tubes not bonded to the overwrap.
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Shuttle propellant tanks, because of their low operating, proof, and burst pres-
sures, have high D/t's for the membrane ranging from 1200 to 3000. The corresponding
allowable constrictive wrap buckling strengths, based on the criteria of Figures 77
and 78, for these high D/t's are in the range of 70 to 700 N/cmz. Such low compres-
sive stress allowables are incompatible with the weight-saving prestress needed in the
tank wall at cryogenic operating conditions. Bonding between the metal shell and
overwrap can however reduce the tendency of the shell to buckle and is therefore man-
datory for vessels of high D/t ratio.

The efficiency of bonding to prevent constrictive wrap buckling of non-structural
liners has been demonstrated on several NASA programs (References 36 to 43).
SCI had used adhesive bonding of the liner to the overwrap to keep thin low-strength
aluminum liners with D/t of 1200 from buckling during pressure cycling over a 1 to 2%
strain range (Reference 44). It should be noted that this work was conducted with .
thin (. 025 cm) liners overwrapped with 0.192 cm of hoop wound glass composite,
whereas the large propellant tanks of interest have a reversed thickness ratio. (On
a typical case, the aluminum membrane might be .31 cm thick and the hoop winding,
.10 cm thick. Another distinction is that the previous aluminum liner was weak and
yielded on each application and on each release of operating pressure. For the large
cryotankage, yielding is not permissible at operating or zero pressure conditions.

A thin 2219 aluminum shell, approximating the D/t ratio of the expected Space
Shuttle full-sized tankage, was overwrapped with glass filament/epoxy resin composite
material under high tension to induce a relatively high compressive residual prestress
in the circumference of the aluminum shell. The primary purpose of this work was
to verify that, because of the bonding of the composite to the shell, the aluminum could
withstand the external radial pressure developed without buckling, The significance
of this verification would be that lightweight tanks could be designed and fabricated
using the bond to prevent buckling of the strong elastic metal shell of high D/t ratio,

The 30.5 cm. ~-dia. 2219-T62 aluminum shell of 0, 025cm wall thickness was
fabricated in accordance with the design shown in Figure 79 and circumferentially
overwrapped in accordance with Figire 80 (-2 configuration). The .038cm. -thick
overwrap was S-901 glass with 2 modified epoxy especially suited for cryogenic
application. Prior to application of the overwrap, two pairs of strain gages were
mounted on the aluminum cylinder to monitor the shell through fabrication and cryo-
genic testing. The location of the gages is shown in Figure 81.

The design objective was to provide enough composite material at a tension that
would produce a compressive circumferential stress in the aluminum of about 19.0
kN/cm2 at room temperature with no externally applied load, as shown in the design
stress-strain relationships of Figure 82. Because of the high diameter-to-thick-
ness ratio of the shell (D/t = 1200), it was necessary to provide internal support to the
aluminum shell during the winding operation to avoid collapse. The support was
obtained by filling the shell with oil and providing hydrostatic pressure. The shell
internal pressure was held at 27,6 N/cm2during application of the first layer of over-
wrap and then increased to 57.9 N/cm?2 for application of the second layer. The pres-
sure was maintained throughout the cure cycle of the composite. The wrans were
applied at about 105N/20-—end-roving (composite stress =25.9 kN/cmz) and 100N/20-
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end (composite stress = 24.4 kN/cm2 for the first and second layers respectively.
Analytically, at the end of winding, with internal pressure of 57.9 N/cm2, this results
in a uniform stress of 24.5 kN/cm2 in the overwrap and approximately zero circum-
ferential stress in the shell. Considering the slight variation of the actual winding
pattern used vs the design value and the effects of the axial strength of the wrap (not
considered in initial design), the attained aluminum compresgsive prestress at the-2
completion of fabrication at zero internal pressure should have been 21,7 kN/em®.

Calculations were made to determine the stresses at various fabrication steps.
Data from these calculations and measured values are contained in Tables 53 and 54.
The net result of the measured values is the indication that the attained compressive
prestress was significantly lower than the desired 19.0 kN/cm2. The value achieved
was probably between 6.7 and 12,2 kN/em?2 compression. From the plot of buckling
gtress vs D/t shown in Figure 78, based on actual data from previous programs, the
unbonded shell would have buckled at a compressive stress on the order of 655N/cm?2,

After fabrication, the tank was subjected to 12 thermal shock cycles from room
temperature to 789K by submerging it in liquid nitrogen. No evidence of debonding
or liner buckling was noted during the entire test.

It can be concluded that:

(1) A thin and strong metal cylinder with a well-bonded, tensioned filament over-
wrap can sugtain high levels of circumferential compressive stress without buckling.
The critical compressive stress level is significantly higher than the constrictive wrap
buckling stress of a cylinder with unbonded overwrap.

(2) No debonding occurred between the overwrap and aluminum, demonstrating
bond strength adequacy for filament-reinforced 2219 aluminum cylinder fabrication
and cryogenic thermal shock exposure.

(3) Design calculations showed that even under the most severe temperature
change, between 297°K and 78°K, the aluminum would remain in compression.

@) No relaxation of the applied prestress occurred during the testing, as seen
from the repeatability of the strain-gage data,

G) The techniques used for prestress application to the glass filament over-
wrapped 2219 aluminum tank covered by this report were not adequate to provide the
desired load because of variables not considered in the initial design analysis. The
most important of these was the biaxial yield criterion in the metal, Hydraulic pres-
sure introduced an undesired longitudinal tensile stress, which in combination with
hoop compression caused yielding to occur during the cure cycle,

) Desired prestress levels can be obtained in overwrapped shells providing
mechanical support (rather than hydrostatic support) is used as a mandrel.

(7) Strain gages located properly on the metal ghell can be used to
measure the effects of the overwrap through the various stages of fabrication and
testing. These gages must be monitored at all stages of fabrication including cure if
the data obtained is to be useful.
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The following recommendations can be made:

(1) To reduce fabrication variables, a rigid mandrel should be used in place
of the hydrostatic mandrel.

(2) Strain gages should be located in areas that are unaffected by the domes,
welds, weld lands, or surface irregularities, in order to attain as near membrane
conditions as possible,

(3) The strain gages should be monitored during all astages of fabrication, in-
cluding cure.

{4} The resin should be treated in such a manner as to reduce migration during
any portion of the fabrication procedure.

Effect of Local Debond of Overwrap

Because the metal strains in a stiffened pressure vessel are variable hoopwise
as one crosses a stiffener, while the fiber strains try to remain constant, a mismatch
in strains tends to occur. If mismatch does occur, debonding will precede it. To
simulate the effect of such local debonding on the buckling resistance of a honded con-
strictively wrapped liner, the following test was conducted. A glass-filament over-
wrapped 2219 aluminum cylinder with built-in "debonds' was designed, fabricated and
tested. The tank configuration is the same as the tank described in the preceding sec-
tion except that intentional delaminations were built-in along the length of the cylinder.
The design is shown in Figure 80 (-1 configuration).

To create the debonds, .25 cm-wide Teflon strips of full cylinder length were
placed at 2. 5 cmintervals around the circumference except at the strain-gage locations.
(See Fig 83.) The unit was then exercised repeatedly with internal pressure with and
without overwrap. Initially, measured strain gage data deviated from predicted values.
With continued cycling, data converged near to predictions, indicating that the cylin-
der was initially out of round and some "ghaking-down' was required to pre-
pare the unit for the planned evaluation. Dry filament overwrapping indicated that
applied pretension was about 80% effective in inducing design prestress into the cylin-
der. This information was used in adjusting winding parameters for final test vesael
fabrication. ‘ ‘

The debonded cylinder was filament overwrapped with stresses reasonably close
to design values, During cure, some changes occurred in axial strain gage readinga.
(No metal yielding was predicted from uniaxial streas considerations at the cure tem-
perature). When internal pressure was relieved after curing, gages were linear to
zero pressure, behaving as predicted.

No delamination, liner buckling or wrinkling, or change of test specimen appear-
ance was noted when pressure was reduced to zero after curing. The unit was subjected
to five thermal shock exposures by immersion in LN,. No debonding or change in the
test specimen appearance was observed. ) :

The conclusion to be derived is that local debonding at stiffeners will not ad-

versely affect the buckling resistance to constriction overwrap provided oy bonding
the fibers to the cylinder.

169



Stringer Attachment

One of the important cost saving design concepts, Concept 2, was the use of bond-
ed-on stiffeners to replace integral ones. The adequacy of this bond, aided by end
mechanical attachments to prevent ''zippering' of the bond-line, had to be confirmed.

A test panel was constructed to test the concept and the fabricationdetails. A . 160
cm-thick, 2024-T81 aluminum flat plate represented the tank wall. A unidirectional
S-901 glass/epoxy layer . 051 cm. thick, simulating the hoop overwrap, was placed in a
direction normal to the applied compressive load. (An identical composite-layer was
placed on the opposite metal face to avoid curling of the sheet during and after bonding. )
Five equidistant 2024-T62 aluminum zee-stiffeners were bonded to the plate along
their entire (cm) lengths and, in addition, bolted at their ends and mid-points. Shop-
details of the panel design are shown in Fig 84. Shop strain gage locations are shown
in Fig 85.

Highlights of the fabrication steps used are as follows:

Metal Components - The metal hardware components for the assembly were fabricated
separately and then match drilled as an assembly prior to any other operations. As
any piece of the hardware was required, it was chemically cleaned with paste cleaner
and then primed to provide a suitable bonding surface,

Glass/Epoxy Composite - The glass/epoxy composite, which simulates the hoop wrap
on the tank, was prepared by winding dry glass roving on a cylindrical mandrel,
impregnating the glass with the resin system and then staging the resin system to an
appropriate condition for handling. Single plies of the sizes required were then cut
from this prepreg. -

Component Fabrication - A scrim-supported adhesive film was applied to the prepared
aluminum panel surfaces (front and back). The glass/epoxy prepreg plies were posi-
tioned. The aluminum bearing strips were laid in position, Using the pre-drilled
holes for positioning, aluminum caul plates were bolted to both sides of the panel.
This assembly was vacuum-bagged and cured. After appropriate preparation of the
surface where the stringers were to be bonded, 2 new adhesive film was applied to
the panel. The prepared Z-shaped stringers were bolted in place with a bearing bar
(tooling) to provide pressure along the entire bonding surface. This assembly was
then cured. After cure, the bearing bars were removed and the bolts replaced. Pot-
ting compound, aluminum-filled epoxy, 2.54 cm, deep, was added to the panel at the
loading ends. The loading ends were then machined flat, square, and parallel. To
ensure as uniform loading conditions as possible, the panel was mounted in the load-
ing press and additional potting compound was cast at the base.

Testing was carried out in a universal testing machine, The ends of the test
panel were potted to assure uniform application of compressive load, Load was ap-
plied in increments of 1360 kg. and strain gage readings were taken at each increment.
Details of the test up are shown in Fig 86. Fig 87 and Table 55 give strain vs.
applied load data.

Initial buckling was observed at a load of 11, 340 kg, or a gross section stress of
13.1 kN/em2. An analysis, which did not include the effect of the glass layer, pre-
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dicted elastic buckling of the sheet hetween stiffeners at a stress of 13.1 I{I\‘i/cm2 or
essentially the test value. The ultimate stress prediction was approximately 23. 2

kN/ sz. This value is approximate since the analysis was performed using MIL HDBK
5A "A'" material properties, which are minimum guaranteed properties, while the

test panel may exhibit typical material properties (156% higher than the minimum).
Fallure occurred at an ultimate load of 21, 800 kg. This corresponds to a gross sec-
tion stress of 25.2kN/cm2. Predicted failure was buckling of the free flange of the

zee stiffener due to torsional instability. The failure mode of the test specimen was
buckling of the unsupported flange and web at mid-span of the panel. No delamination
occurred until ultimate load was reached, and then only locally at the point of the
stiffener buckle (see Fig 88},

This test was considered fﬁlly successful in demonstrating the bonded attach-
ment of the longitudinal stiffener and lends confidence to full-scale testing of a com-
parable concept for an actual vehicle, ’
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Fig. 70 Breaking Stress vs. Winding Speed for §-901 20-End Glass/Epoxy Preimpregnated Roving
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Fig. 71 Fiber Breaking Stress vs. Winding Speed for 5-901 20-End Glass/Epoxy In-Process impregnated Roving
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Fig. 82 Stress-Strain Diagram for 2219-T62 Aluminum Cylinder Circumferentially Reinforced with S-901
Giass Filament
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Fig. 83 Application of Teflon Strips and Strain Gages to 2219 Aluminum
Shell Prior to Filament Overwrapping
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GAGE LOCATIONS:

(1), {2}, 13}, {4) — ON SIDE OF PANEL WITH NO STIFFENERS
(R.1), R.4) — ON SIDE OF PANEL WITH STIFFENERS

(R.2} — ON SUPPORTED STIFFENER FLANGE

(R.3) — ON UNSUPPORTED FLANGE OF STIFFENER

(a}

{3} (R.3)

ib) \* rﬂ"/-
/

¥
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{4}, {R.4}
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/ o
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(), (R / // \
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Fig. 85 Test Panel and Location of Strain Gages
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Table 52 Maximum Recommended Winding Tension
STRESS, kN/cm®
$-901 GLASS PRD-49 HTS GRAPHITE
PREPREG PREPREG PREPREG BORON
RANGE OF FILAMENT
BREAKING VALUES 116/169 1121171 54/90 52/262
RANGE OF UNIDIRECTIONAL
COMPOSITE BREAKING VALUES 78/113 72/110 32/54 281144
MAXIMUM DESIGN VALUE,
FILAMENT WINDING STRESS 124 138 69 124
MAXIMUM DESIGN VALUE, )
UNIDIRECTIONAL
COMPOSITE WINDING STRESS 83 80 41 69

Table 53 Calculated and Measured Metal Stresses and Strains in 30.5 cm Diameter Glass/Epoxy Overwrapped Aluminum Shell
MEASURED
CONDITION DESIGN
PRESSURE WRAP
N/em® NO o €L oy a €4 €y Oy o, €n €L 0 o

0 v} ] 0 4] 4] 4] 0 g 4] 0 1] 0 0
138 0 954 194 83 415 -200 ~55 -18 -10 900 475 86 6.3
27.6 0 1908 388 16.5 8.25 1140 20 9.4 3.7 2210 825 19.4 12.3
27.6 1 -766 1271 -3.0 8.25 54 630 2.1 5.2 973 1365 1.6 13.7
57.9 1 539 1961 9.6 17.4 1278 1570 14.6 16.2 2430 2326 26.0 254
57.9 2 -1068 | 2491 -20 | 174 300 | 1923 76 | 1584 1470 2685 19.2 25.8
57.9 ng‘?;?(RE —1031 | 1763 .37 | 17

. AFTER CURE

57.9 2 -1031 | 1783 -3.7 1 1.7 100 | 1725 54 | 143 855 1480 109 14.3
a1.4 2 -1551 ] 1474 -8.8 1.9 ~a18 | 1372 03 | 100 -518 -353 -5.2 -4.3
27.6 2 -1984 | 1233 -13.1 48 -g23 | 1070 -3.9 6.5 -55 | . 848 19 6.8
13.8 2 ~2417 992 -17.4 1.7 -1249 710 -85 24 -492 ‘ a78 -28 2.6

0 2 —2860 751 -21.7 1.4 -15665 320 122 | -122 | -18 -824 55 -6.8
0,78°K 2 Ae =1 - 2046 Ae = -2086

{AE] WAS AVERAGE FOQR 8 CYCLES

H=HOOP; L=LONGITUDINAL e = UNIT STRAIN X 10%; o = STRES

S, kN/cm?




Table 54 Predicted and Derived Stresses in Glass/Epoxy Overwrap of Aluminum Shell

STRESS IN OVERWRAP kN/cm?
CONDITION DIRECTION DESIGN o 90°
27.58 N/cm? H 259 19.2 6.6
1ST WRAP L .0 1] 0
57.92 Nfem? H 334 26.8
25T WRAP L 0 0 o
57.92 Nfcm? H 24.5 18.1 1%.7
2ND WRAP L 0 0 0
57.92 Nfcm? H 31.2 — —
AT 427K L 0 - -
57.92 N/cm® H 25,6 19.5 15.9
AFTER CURE L 38 2.1 2.0
o} H 145 8.1 45

I 10 1.0 1.7
0 pst 78K H 5.8 - -
L -3 - -

Yable 55 Load-Strain Readings in Z-Stiffened Panels

LOAD, LINER STRAIN, u cm/cm
P, KN 1 2 3 4 R.1 R.2 R3 R.4
0 0 4] 4] o] 0 0 a Q
13.3 126 165 210 260 . 130 180 280 24%
26.7 - 300 365 420 500 300 375 450 470
40.0 465 545 600 680 465 560 725 665
53.3 665 760 B80S Qa0 640 800 925 875
66.7 845 955 1015 109% 800 975 1095 1065
80.1 1040 1155 1210 1225 980 1120 1300 1265
Q3.4 1230 1355 1405 1495 1150 1385 1480 1440
107 1415 1560 1595 1685 1320 1695 1675 1660
120 1605 1765 1795 1875 1500 1785 1860 1840
133 1790 1855 1965 2080 - 1670 1985 2045 2020
147 1975 2155 2185 2240 1840 2165 2220 2205
160 2165 2350 2345 2425 2025 2375 2405 2395
173 2355 2550 2520 2625 2200 2570 2585 2590
187 2525 2740 275 2820 2380 2765 2765 2765
200 2705 {1 282% 2935 3055 2550 2950 2925 29156
24 FAILURE
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APPENDIX C

ONE-SIXTH SCALE TEST HARDWARE DRAWINGS
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